



	GuruAanklan / HSC Examination / Grand Test / Chemistry Code / Set-A / Solutions			
16.	SECTION - C Given :			
101				
	Solution : Mass of 1 atom of Ag = $\frac{108}{6.022 \times 10^{23}} = 17.93 \times 10^{-23}$ g	$[\frac{1}{2}M]$		
	Fcc unit cell contains 4 Ag atoms	$[\frac{1}{2}M]$		
	Mass of a unit cell = $4 \times 17.93 \times 10^{-23}$ = 71.72×10^{-23} g	$[\frac{1}{2}M]$		
	Volume of unit cell = $\frac{\text{Mass of unit cell}}{\text{Density}}$	$[\frac{1}{2}M]$		
	$=\frac{71.72\times10^{23}}{10.51\mathrm{A}}=6.824\times10^{-23}\mathrm{cm}^{3}$	[1 M]		
17.	When tetraalkyl ammonium halide is heated with moist silver hydroxide; it gives quaternary ammonium. This on strong heating undergo β -elimination to give alkenes. The major product is least substitute	•		
	e.g. $C_2H_5 - \overset{+}{N}(CH_3)_3I + AgOH \xrightarrow{Ag_2O/H_2O} C_2H_5 - \overset{+}{N}(CH_3)_3OH^- + AgI$	[1 M]		
	Ethyltrimethyl ammonium iodide			
	$C_2H_5 - \overset{+}{N}(CH_3)_3OH^- \xrightarrow{\Delta} CH_2 = CH_2 + (CH_3)_3N + H_2O$ Ethylene	[1 M]		
18.	Given :			
	Solution : $\Delta T_{b(ob)} = 373.0527 - 373 = 0.0527 \text{ K}$ $\Delta T_{b(th)} = K_{b} \times m = 0.52 \times 0.1 = 0.052 \text{ K}$	$[\frac{1}{2} M]$ $[\frac{1}{2} M]$		
	$i = \frac{\Delta T_{b(ob)}}{\Delta T_{b(th)}} = \frac{0.0527}{0.052} = 1.0135$	$[\frac{1}{2}M]$		
	$NH_{4}OH \underset{\alpha}{\longrightarrow} NH_{4}^{+} + OH_{\alpha}^{-}$	$[\frac{1}{2}M]$		
<i>.</i>	$i = 1 - \alpha + \alpha + \alpha = 1 + \alpha$ $\alpha = i - 1 = 1.0135 - 1 = 0.0135$			
	$K_{b} = \frac{C\alpha^{2}}{1-\alpha}$ \therefore α is very small, $1-\alpha \approx 1$	$[\frac{1}{2}M]$		
<i>.</i>	$K_{b} = C\alpha^{2} = 0.1 \times (0.0135)^{2}$ = 1.82 × 10 ⁻⁵	$[\frac{1}{2}M]$		
19.	(a) CH_{3} \xrightarrow{O} CH_{3} \xrightarrow{O} CH_{3} \xrightarrow{O} CH_{3} \xrightarrow{O} \xrightarrow{O} CH_{3} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} CH_{3} \xrightarrow{O} \xrightarrow{O} \xrightarrow{H} \xrightarrow{O} \xrightarrow{H} \xrightarrow{O} \xrightarrow{H} \xrightarrow{O} \xrightarrow{O} \xrightarrow{H} \xrightarrow{O} \xrightarrow{H} \xrightarrow{O} \xrightarrow{H} \xrightarrow{O}	[1 M]		
	(b) CH_{3} $C-OH + PCl_{5}$ $\xrightarrow{\Delta}$ $CH_{3} - C - Cl + POCl_{3} + HCl \uparrow$ Acetylchloride	[1 M]		
	(c) $CH_3^{-1}C^{-1}OH + SOCI_2^{-\Delta} \xrightarrow{O} CH_3^{-1}C^{-1}OH + SOCI_2^{-\Delta} \xrightarrow{O} CH_3^{-1}OH + SOCI_2^{-\Delta} \xrightarrow{O} CH_3^{-\Delta} \xrightarrow{O} $	[1 M]		
Guru Aanklan 3 Website : www.guruaanklan.com				

$\begin{aligned} & = \frac{2.8 \times 10^{-2}}{28 \times 10^{-2}} = 1 \text{ mol} \end{aligned} \qquad [12 \text{ M} \\ & = \frac{2.8 \times 10^{-2}}{28 \times 10^{-2}} = 1 \text{ mol} \end{aligned} \qquad [12 \text{ M} \\ & W_{max} = -2.303 \text{ nRT } \log_{10} \frac{P_1}{P_2} \qquad [1 \text{ M} \\ & 17330 = 2.303 \times 1 \times 8.314 \times 300 \times \log_{10} \frac{1.515 \times 10^6}{P_2} \\ & \ddots \frac{17330}{2.303 \times 1 \times 8.314 \times 300} = [\log_{10} 1.515 \times 10^6 - \log_{10} P_2] \\ & \ddots 3.017 = 6.1804 - \log_{10} P_2 \\ & \ddots \log_{10} P_2 = 6.1804 - 3.017 = 3.1634 \\ & \ddots P_2 = AL(3.1634) \\ & = 1456.8 \text{ Nm}^{-2} \end{aligned} \qquad [1 \text{ M} \\ & A \text{ reaction is which rate of the reaction does not depend on the concentration of any reactant takingpart in the reaction is which rate of the reaction does not depend on the concentration of any reactant takingpart in the reaction is called zero-order reaction. \\ & A \rightarrow \text{ products} \\ & \text{Rate of the reaction is} \\ & \text{Rate alw. \\ & \text{Rate = } k \times A ^{\mu} = k \\ & \therefore -d A = k \times dt \\ & \text{Integrating the above equation} \\ & \int_{1A_0}^{1A_1} -d[A] = \int_{1-0}^{1-k} kdt \\ & -\int_{1A_0}^{1A_0} d[A] = k \int_0^1 dt \\ & -([A]_1 - [A]_0] = kt \\ & \therefore [A]_1 = -[A]_1 = kt \\ & \therefore [A]_1 = -[A]_1 = kt \\ & \therefore k = \frac{[A]_0 - [A]_1}{t} \text{ This is the rate law expression} \\ & \text{IM} \end{aligned}$		GuruAanklan / HSC Examination / Grand Test / Chemistry Code / Set-A / Solu	tions
$\begin{split} W_{mn} &= 17.33 kJ \\ &= -17330 J \end{split} \\ \text{Number of moles of } N_2 = n = \frac{W}{M_{N_2}} \qquad $	23.		
$=-17330 J$ Number of moles of $N_2 = n = \frac{W}{M_{\chi_1}}$ $= \frac{2.8 \times 10^{-3}}{28 \times 10^{-2}} = 1 \text{ mol}$ $W_{max} = -2.303 \text{ nRT } \log_{10} \frac{P}{P_2}$ $[1 M$ $W_{max} = -2.303 \text{ nRT } \log_{10} \frac{P}{P_2}$ $(1 M)$ $17330 = 2.303 \times 1 \times 8.314 \times 300 \times \log_{10} \frac{1.515 \times 10^6}{P_2}$ $\therefore \frac{17330}{2.303 \times 1 \times 8.314 \times 300} = [\log_{10} 1.515 \times 10^6 - \log_{10} P_2]$ $\therefore 3.017 = 6.1804 - \log_{10} P_2$ $\therefore \log_{10} P_2 = 6.1804 - 3.017 = 3.1634$ $\therefore P_2 = AI(3.1634)$ $= 1456.8 \text{ Nm}^{-2}$ $I M$ A reaction is which rate of the reaction does not depend on the concentration of any reactant taking part in the reaction is called zero-order reaction. If M A reaction is Rate of the reaction is Rate of the reaction is Rate at P = A (A) (A) = A (A) = A (A) (A) (A) = A (A) (A) (A) (A) (A) (A) = A (A) (A) (A) (A) (A) (A) (A) (A) (A) (
Number of moles of $N_2 = n = \frac{W}{M_{N_2}}$ $= \frac{2.8 \times 10^{-2}}{28 \times 10^{-2}} = 1 \text{ mol}$ $[12 \text{ M}$ $= \frac{2.8 \times 10^{-2}}{28 \times 10^{-2}} = 1 \text{ mol}$ $[12 \text{ M}$ $W_{max} = -2.303 \text{ nRT } \log_{10} \frac{P_1}{P_2}$ $[11 \text{ M}$ $17330 = 2.303 \times 1 \times 8.314 \times 300 \times \log_{10} \frac{1.515 \times 10^6}{P_2}$ $\therefore \frac{17330}{2.303 \times 1 \times 8.314 \times 300} = [\log_{10} 1.515 \times 10^6 - \log_{10} P_2]$ $\therefore 3.017 = 6.1804 - \log_{10} P_2$ $\therefore \log_{10} P_2 = 6.1804 - 3.017 = 3.1634$ $\therefore P_2 = AL(3.1634)$ $= 1456.8 \text{ Nm}^{-2}$ $I \text{ M}$ 24. A reaction is which rate of the reaction does not depend on the concentration of any reactant taking part in the reaction is which rate of the reaction does not depend on the concentration of any reactant taking part in the reaction is which rate of the reaction does not depend on the concentration of any reactant taking part in the reaction is which rate of the reaction does not depend on the concentration of any reactant taking part in the reaction is which rate of the reaction does not depend on the concentration of any reactant taking part in the reaction is which rate of the reaction does not depend on the concentration of any reactant taking part in the reaction is which rate of the reaction does not depend on the concentration of any reactant taking part in the reaction is which rate of the reaction does not depend on the concentration of any reactant taking part in the reaction is which rate of the reaction does not depend on the concentration of any reactant taking part in the reaction is which rate of the reaction does not depend on the concentration of any reactant taking part in the reaction is which rate of the reaction is the reaction does not depend on the concentration of any reactant taking part in the reaction is the reactant in the reactant is the reactant i			
$\frac{2.8 \times 10^{-2}}{28 \times 10^{-2}} = 1 \text{ mol} $ $W_{max} = -2.303 \text{ nRT} \log_{10} \frac{P_1}{P_2} $ $[1 \text{ M}$ $W_{max} = -2.303 \text{ nRT} \log_{10} \frac{P_1}{P_2} $ $[1 \text{ M}$ $17330 = 2.303 \times 1 \times 8.314 \times 300 \times \log_{10} \frac{1.515 \times 10^6}{P_2} $ $\therefore \frac{17330}{2.303 \times 1 \times 8.314 \times 300} = [\log_{10} 1.515 \times 10^6 - \log_{10} P_2]$ $\therefore 3.017 = 6.1804 - \log_{10} P_2 $ $\therefore \log_{10} P_2 = 6.1804 - 3.017 = 3.1634 $ $\therefore P_2 = \text{AI} (3.1634) = 1456.8 \text{ Nm}^2 $ 1 M 24. A reaction is which rate of the reaction does not depend on the concentration of any reactant taking part in the reaction is called zero-order reaction. A ~ products Rate of the reaction is Rate = $\frac{-d[A]}{dt}$ $Rate = \frac{-d[A]}{dt} $ $P_2 = \frac{1}{120} \text{ M}$ $P_3 \text{ rate law. Rate = k \times A ^6 = k$ $P_1 = k \times dt$ $P_2 = \frac{1}{120} \text{ M}$ $P_2 = \frac{1}{120} \text{ M}$ $P_3 = \frac{1}{120} \text{ M}$ $P_4 = \frac{1}{120} $			
$W_{max} = -2.303 \text{ nRT } \log_{10} \frac{P_1}{P_2} $ [1 M 17330 = 2.303 × 1 × 8.314 × 300 × $\log_{10} \frac{1.515 \times 10^6}{P_2}$ $\therefore \frac{17330}{2.303 \times 1 \times 8.314 \times 300} = [\log_{10} 1.515 \times 10^6 - \log_{10} P_2]$ $\therefore 3.017 = 6.1804 - \log_{10} P_2$ $\therefore \log_{10} P_2 = 6.1804 - 3.017 = 3.1634$ $\therefore P_2 = AL(3.1634)$ $= 1456.8 \text{ Nm}^2$ [1 M 24. A reaction is which rate of the reaction does not depend on the concentration of any reactant takingpart in th reaction is called zero-order reaction. [1 M $A \rightarrow \text{products}$ Rate of the reaction is B Rate $= \frac{-d[A]}{dt}$ [1/2 M By rate law. Rate $= \frac{-d[A]}{dt}$ [1/2 M By rate law. Rate $= k \times [A]^0 = k$ $\therefore -d[A] = k \times dt$ Integrating the above equation $\int_{1A_0}^{A_1} d[A] = k \int_0^1 dt$ [1/2 M $-\int_{1A_0}^{A_1} d[A] = k \int_0^1 dt$ [1/2 M $-([A]_1 - [A]_0) = kt$ $\therefore [A]_0 - [A]_1 = kt$ $\therefore k = \frac{[A]_0 - [A]_1}{t}$ This is the rate law expression [1 M $\therefore [A]_1 = -kt + [A]_0$		Number of moles of N ₂ = n = $\frac{W}{M_{N_2}}$	$[\frac{1}{2}M]$
$17330 = 2.303 \times 1 \times 8.314 \times 300 \times \log_{10} \frac{1.515 \times 10^6}{P_2}$ $\therefore \frac{17330}{2.303 \times 1 \times 8.314 \times 300} = [\log_{10} 1.515 \times 10^6 - \log_{10} P_2]$ $\therefore 3.017 = 6.1804 - \log_{10} P_2$ $\therefore \log_{10} P_2 = 6.1804 - \log_{10} P_2$ $\therefore \log_{10} P_2 = 6.1804 - \log_{10} P_2$ $\therefore \log_{10} P_2 = 6.1804 - \log_{10} P_2$ $= 1456.8 \text{ Nm}^2$ [1 M reaction is which rate of the reaction does not depend on the concentration of any reactant taking part in the reaction is solid exero-order reaction. A \rightarrow products Rate of the reaction is Rate = $\frac{-d[A]}{dt}$ [1/2 M By rate law. Rate = $k \times [A]^9 = k$ $\therefore -d[A] = k \times dt$ Integrating the above equation $\int_{[A_b]}^{A_b} -d[A] = \int_{t=0}^{t} k dt$ $-\int_{[A_b]}^{(A_b]} -k \int_{0}^{t} dt$ $-([A]_t - [A]_b) = kt$ $\therefore [A]_0 - [A]_t = kt$ $\therefore [A]_t = -kt + [A]_0$ (1 M OR		$= \frac{2.8 \times 10^{-2}}{28 \times 10^{-3}} = 1 \text{ mol}$	$[\frac{1}{2}M]$
$\frac{17330}{2.303 \times 1 \times 8.314 \times 300} = [\log_{10} 1.515 \times 10^6 - \log_{10} P_2]$ $\therefore 3.017 = 6.1804 - \log_{10} P_2$ $\therefore \log_{10} P_2 = 6.1804 - 3.017 = 3.1634$ $\therefore P_2 = AL(3.1634) = 1456.8 \text{ Nm}^2$ [1 M 24. A reaction is which rate of the reaction does not depend on the concentration of any reactant takingpart in the reaction is called zero-order reaction. [1 M A -> products Rate of the reaction is Rate = $\frac{-d[A]}{dt}$ [½ M By rate law. Rate = $k \times [A]^a = k$ $\therefore -d[A] = k \times dt$ Integrating the above equation $\int_{[A]_b}^{[A]_b} -d[A] = \int_{1-0}^{1-1} kdt$ $-\int_{[A]_b}^{[A]_b} = k[t]_0^t$ $-([A]_{[A]_b]_b} = k[t]_0^t$ $-([A]_{[A]_b]_b} = kt$ $\therefore [A]_0 - [A]_{[a]_b} = kt$ $\therefore [A]_0 - [A]_{[a]_b} = tt$ $(A]_0 - [A]_{[a]_b} = tt$ $(A]_0 - [A]_$		$W_{max} = -2.303 \text{ nRT} \log_{10} \frac{P_1}{P_2}$	[1 M]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$17330 = 2.303 \times 1 \times 8.314 \times 300 \times \log_{10} \frac{1.515 \times 10^6}{P_2}$	
$ \int_{a_{b}}^{b_{b}} e_{b}^{2} = 6.1804 - 3.017 = 3.1634 $ $ P_{2} = AL(3.1634) = 1456.8 \text{ Nm}^{-2} $ $ II M$ $ A \text{ reaction is which rate of the reaction does not depend on the concentration of any reactant taking part in the reaction is which rate of the reaction. If M A \rightarrow products Rate \text{ of the reaction is} Rate = \frac{-d[\Lambda]}{dt} P_{2} = AL(3.1634) = [1 M A \rightarrow products Rate of the reaction is Rate = \frac{-d[\Lambda]}{dt} P_{2} = AL(3.1634) = [1 M A \rightarrow products Rate of the reaction is Rate = \frac{-d[\Lambda]}{dt} P_{2} = AL(3.1634) = [1 M A \rightarrow products Rate of the reaction is Rate = \frac{-d[\Lambda]}{dt} P_{2} = AL(3.1634) = [1 M A \rightarrow products Rate of the reaction is Rate = \frac{-d[\Lambda]}{dt} P_{2} = AL(3.1634) = [1 M A \rightarrow products Rate of the reaction is Rate = \frac{-d[\Lambda]}{dt} P_{2} = AL(3.1634) = [1 M A \rightarrow products Rate of the reaction is Rate = \frac{-d[\Lambda]}{dt} P_{3} = AL(3.1634) = [1 M A \rightarrow products Rate of the reaction is Rate = \frac{-d[\Lambda]}{dt} = \frac{1}{t} + \frac{1}{t} P_{3} = AL(3.1634) = \frac{1}{t} + \frac{1}{t} + \frac{1}{t} + \frac{1}{t} = \frac{1}{t} + \frac{1}{$		$\therefore \frac{17330}{2.303 \times 1 \times 8.314 \times 300} = [\log_{10} 1.515 \times 10^6 - \log_{10} P_2]$	
$= 1456.8 \text{ Nm}^{-2} $ [1 M 24. A reaction is which rate of the reaction does not depend on the concentration of any reactant taking part in the reaction is called zero-order reaction. [1 M A \rightarrow products Rate of the reaction is Rate $= \frac{-d[A]}{dt}$ [½ M By rate law. Rate $= k \times [A]^{\circ} = k$ $\therefore -d[A] = k \times dt$ [½ M Integrating the above equation $\int_{[A]_{0}}^{[A]_{0}} -d[A] = \int_{t=0}^{t=t} kdt$ $-\int_{[A]_{0}}^{[A]_{0}} d[A] = k\int_{0}^{t} dt$ $-([A]_{[A]_{0}}] = k[t]_{0}^{t}$ $-([A]_{[A]_{0}}] = k[t]_{0}^{t}$ $-([A]_{[-A]_{0}}] = kt$ $\therefore k = \frac{[A]_{0} - [A]_{t}}{t}$ This is the rate law expression [1 M OR $\therefore [A]_{t} = -kt + [A]_{0}$			
24. A reaction is which rate of the reaction does not depend on the concentration of any reactant taking part in the reaction is called zero-order reaction. [1 M] A \rightarrow products Rate of the reaction is Rate = $\frac{-d[A]}{dt}$ [1/2 M] By rate law. Rate = k × [A] ^o = k $\therefore -d[A] = k \times dt$ Integrating the above equation $\int_{[A]_{b}}^{[A]_{b}} -d[A] = \int_{t=0}^{t=0}^{t=0} k dt$ $-\int_{[A]_{b}}^{[A]_{b}} -d[A] = k \int_{0}^{t=0} dt$ $-([A]_{t} - [A]_{0}) = kt$ $\therefore [A]_{0} - [A]_{t} = kt$ $\therefore k = \frac{[A]_{0} - [A]_{t}}{t}$ This is the rate law expression $i M$ $\therefore [A]_{t} = -kt + [A]_{0}$		-	
reaction is called zero-order reaction. $A \rightarrow \text{products}$ Rate of the reaction is $Rate = \frac{-d[A]}{dt}$ [½ M By rate law. Rate = k × [A] ^o = k $\therefore -d[A] = k \times dt$ Integrating the above equation $\int_{[A]_{k}}^{[A]_{k}} -d[A] = \int_{t=0}^{t=t} k dt$ $-\int_{[A]_{k}}^{[A]_{k}} -d[A] = k\int_{0}^{t} dt$ $-[A]_{[A]_{k}}^{[A]_{k}} = k[t]_{0}^{t}$ $-([A]_{t} - [A]_{0}) = kt$ $\therefore [A]_{0} - [A]_{t} = kt$ $\therefore k = \frac{[A]_{0} - [A]_{t}}{t}$ This is the rate law expression [1 M OR $\therefore [A]_{t} = -kt + [A]_{0}$	24		[1 M]
A → products Rate of the reaction is Rate = $\frac{-d[A]}{dt}$ [½ M By rate law. Rate = k × [A] ^o = k ∴ -d[A] = k × dt Integrating the above equation $\int_{[A]_{0}}^{[A]_{1}} -d[A] = \int_{t=0}^{t=t} k dt$ $-\int_{[A]_{0}}^{[A]_{1}} d[A] = k \int_{0}^{t} dt$ $-[A]_{[A]_{0}}^{[A]_{1}} = k[t]_{0}^{t}$ $-([A]_{t} - [A]_{0}) = kt$ $\therefore [A]_{0} - [A]_{t} = kt$ $\therefore k = \frac{[A]_{0} - [A]_{t}}{t}$ This is the rate law expression $I1 M$ OR $\therefore [A]_{t} = -kt + [A]_{0}$	24.	· · · ·	takingpart in the [1 M]
$Rate = \frac{-d[A]}{dt}$ $By rate law.$ $Rate = k \times [A]^{\circ} = k$ $\therefore -d[A] = k \times dt$ Integrating the above equation $\int_{[A]_{0}}^{[A]_{0}} -d[A] = \int_{t=0}^{t=t} k dt$ $-\int_{[A]_{0}}^{[A]_{0}} d[A] = k \int_{0}^{t} dt$ $-[A]_{[A]_{0}}^{[A]_{0}} = k[t]_{0}^{t}$ $-([A]_{[A]_{0}} = k[t]_{0}^{t}$ $-([A]_{0} - [A]_{t} = kt$ $\therefore [A]_{0} - [A]_{t} = kt$ $\therefore [A]_{t} = -kt + [A]_{0}$ $I' = 0$ $I' = 0$ $I' = 0$ $I' = 0$		$A \rightarrow \text{products}$	[1 171]
By rate law. Rate = k × [A] ^o = k \therefore -d[A] = k × dt Integrating the above equation $\int_{[A]_{0}}^{[A]_{1}} -d[A] = \int_{t=0}^{t=t} k dt$ $-\int_{[A]_{0}}^{[A]_{1}} d[A] = k\int_{0}^{t} dt$ $-[A]_{[A]_{0}}^{[A]_{1}} = k[t]_{0}^{t}$ $-([A]_{t} - [A]_{0}) = kt$ $\therefore [A]_{0} - [A]_{t} = kt$ $\therefore k = \frac{[A]_{0} - [A]_{t}}{t}$ This is the rate law expression $[1 M]$ OR $\therefore [A]_{t} = -kt + [A]_{0}$		Rate of the reaction is	
Rate = $k \times [A]^{\circ} = k$ $\therefore -d[A] = k \times dt$ Integrating the above equation $\int_{[A]_{0}}^{[A]_{1}} -d[A] = \int_{t=0}^{t=t} k dt$ $-\int_{[A]_{0}}^{[A]_{1}} d[A] = k \int_{0}^{t} dt$ $-[A]_{[A]_{0}}^{[A]_{1}} = k[t]_{0}^{t}$ $-([A]_{t} - [A]_{0}) = kt$ $\therefore [A]_{0} - [A]_{t} = kt$ $\therefore k = \frac{[A]_{0} - [A]_{t}}{t}$ This is the rate law expression $[1 M]_{t} = -kt + [A]_{0}$ OR		$Rate = \frac{-d[A]}{dt}$	$[\frac{1}{2}M]$
$\therefore -d[A] = k \times dt$ Integrating the above equation $\int_{[A]_{0}}^{[A]_{k}} -d[A] = \int_{t=0}^{t=t} k dt$ $-\int_{[A]_{0}}^{[A]_{k}} d[A] = k \int_{0}^{t} dt$ $-[A]_{[A]_{0}}^{[A]_{k}} = k[t]_{0}^{t}$ $-([A]_{t} - [A]_{0}) = kt$ $\therefore [A]_{0} - [A]_{t} = kt$ $\therefore k = \frac{[A]_{0} - [A]_{t}}{t}$ This is the rate law expression $[1 M]_{t} = -kt + [A]_{0}$		-	
Integrating the above equation $\int_{[\Lambda]_{0}}^{[\Lambda]_{1}} -d[A] = \int_{t=0}^{t=t} kdt$ $-\int_{[\Lambda]_{0}}^{[\Lambda]_{1}} d[A] = k\int_{0}^{t} dt$ $-[A]_{[\Lambda]_{0}}^{[\Lambda]_{1}} = k[t]_{0}^{t}$ $-([A]_{t} - [A]_{0}) = kt$ $\therefore [A]_{0} - [A]_{t} = kt$ $\therefore [A]_{0} - [A]_{t} = kt$ $\therefore k = \frac{[A]_{0} - [A]_{t}}{t} \text{ This is the rate law expression}$ $[1 M]$ OR $\therefore [A]_{t} = -kt + [A]_{0}$			
$\int_{[A]_{0}}^{[A]_{t}} -d[A] = \int_{t=0}^{t=t} kdt$ $-\int_{[A]_{0}}^{[A]_{t}} d[A] = k\int_{0}^{t} dt \qquad [1/2 M]$ $-[A]_{[A]_{0}}^{[A]_{t}} = k[t]_{0}^{t}$ $-([A]_{t} - [A]_{0}) = kt$ $\therefore [A]_{0} - [A]_{t} = kt$ $\therefore [A]_{0} - [A]_{t} = kt$ $\therefore k = \frac{[A]_{0} - [A]_{t}}{t} \text{ This is the rate law expression} \qquad [1 M]$ OR $\therefore [A]_{t} = -kt + [A]_{0}$			
$-[A]_{[A]_{0}}^{[A]_{t}} = k[t]_{0}^{t}$ $-([A]_{t} - [A]_{0}) = kt$ $\therefore [A]_{0} - [A]_{t} = kt$ $\therefore [A]_{0} - [A]_{t} = kt$ $\therefore k = \frac{[A]_{0} - [A]_{t}}{t}$ This is the rate law expression $I1 M$ OR $\therefore [A]_{t} = -kt + [A]_{0}$			
$-[A]_{[A]_{0}}^{[A]_{t}} = k[t]_{0}^{t}$ $-([A]_{t} - [A]_{0}) = kt$ $\therefore [A]_{0} - [A]_{t} = kt$ $\therefore [A]_{0} - [A]_{t} = kt$ $\therefore k = \frac{[A]_{0} - [A]_{t}}{t}$ This is the rate law expression $I1 M$ OR $\therefore [A]_{t} = -kt + [A]_{0}$		$\begin{bmatrix} A \end{bmatrix}_0 \qquad \qquad t = 0$	
$-([A]_{t} - [A]_{0}) = kt$ $\therefore [A]_{0} - [A]_{t} = kt$ $\therefore k = \frac{[A]_{0} - [A]_{t}}{t}$ This is the rate law expression $I1 M$ OR $\therefore [A]_{t} = -kt + [A]_{0}$		$-\int_{[A]_0}^{[A]_t} d[A] = k \int_0^t dt$	$[\frac{1}{2}M]$
$\therefore [A]_0 - [A]_t = kt$ $\therefore k = \frac{[A]_0 - [A]_t}{t}$ This is the rate law expression $I1 M$ OR $\therefore [A]_t = -kt + [A]_0$		9	
$\therefore k = \frac{[A]_0 - [A]_t}{t}$ This is the rate law expression [1 M OR $\therefore [A]_t = -kt + [A]_0$		$-([\mathbf{A}]_{t} - [\mathbf{A}]_{0}) = \mathbf{k}t$	
$\therefore [A]_t = -kt + [A]_0$		$\therefore [A]_0 - [A]_t = kt$	
$\therefore [A]_t = -kt + [A]_0$		$\therefore k = \frac{[A]_0 - [A]_t}{t}$ This is the rate law expression	[1 M]
		$\therefore [\mathbf{A}]_{t} = -\mathbf{k}t + [\mathbf{A}]_{0}$	
Guru Aanklan 5 Website : www.guruaanklan.com		Guru Aanklan 5 Website : www.gurua	anklan.com

Guru Aanklan

Website : www.guruaanklan.com

	0			Grand Test / Chemistry Code / Set-A / Solution OR	
27.			Class of polymer	Name of monomer/s	
27.	(a)	Superalue	1 0	Methyl α -cyanoacrylate	[1 M
	(a) (b)	Superglue Saran	Homopolymer Copolymer	5 5 5	[1 M
	(b)	Saran	Copolymer	Vinyl chloride and vinylidene chloride	[1 M
	•	Given :			
	Solution : Since ΔH is negative, the reaction is exothermic		reaction is exothermic	[½ M	
		$\Delta G = \Delta H -$			[½ M
			-400×0.04		
		-	-16 = -126 kJ		[½ M
			G is negative, the reaction	-	[½ M
	•	-	s of extraction of metals g them by suitable reduct	by converting their ores into aqueous solutions of meta ing agents.	al compound [1 M
28.	•	$P_4 + 3N_1$	$aOH + 3H_2O \xrightarrow{hot} aOH + 3H_2OH + $	$PH_3 + 3NaH_2PO_2$	[1 M
				osphine Sodium	L
		phosphorus		hypophosphite	
		Ç	CH CH	$H_3 C_2 H_5$	
	•	(a) CH_3 C	$C - Cl$ (b) $CH_3 - Cl$	$\begin{array}{c} H_3 C_2H_5 \\ \hline CH - CH_2 - CH_2 - CH_3 \end{array}$	[1 + 1 M
	•	On the basis	of molecular shape, pro	oteins are classified into two types.	
		()	s proteins : Insoluble in ogen bonds.	water, long, thread like. The polypeptide chains are	held togethe [1 M
			atin in hair, fibroin in silk	cetc.	L
				n water and aqueous solutions of bases acids and sa	alts. They ar
			-	nd have intramolecular hydrogen bonding.	[1 M
		e.g. haer	moglobin, albumin etc.		
				OR	
28.	•	3Na + As -	$\xrightarrow{\Delta} \operatorname{Na}_{3}\operatorname{As}$ Sodium Arsenic	le	[1 M
		(a) Bromor	henyl methane		[1 M
		(b) 2-Chlor	-		[1 M
		(0) 2 011101		0	
		HOH ₂ C	O Base	$\overline{O} \xrightarrow{P} O \xrightarrow{H_2C} Base$	
		Н	Н		
	_	Ĥ \	H H	\dot{H} H	I
	•		H OH ucleoside	О́Н О́Н [1+1 M] Nucleotide	
		Guru A	anklan	7 Website : www.guruaan	klan.com

	GuruAanklan / HSC Examination / Grand Test / Chemistry Code / Set-A / Solution	s
29. •	(a) $S + 6HNO_3 \xrightarrow{Hot} H_2SO_4 + 6NO_2 + 2H_2O$	[1 M]
•	(b) $2S + C \longrightarrow CS_2$ Carbon disulphide	[1 M]
•	(i) It could not explain why only certain elements possess the property of forming co compounds.	o-ordination [½ M]
	(ii) It could not explain why bonds in the co-ordination compounds have directional properties of t	erties. [½ M]
	(iii) It could not explain why co-ordination compounds have characteristic magnetic and optic	al properties. [½ M]
•	 (iv) It could not explain structures of co-ordination compound properly. Glucose on oxidation by a mild oxidizing agent like Bromine water gives gluconic acid, what the carbonyl group in glucose is aldehyde group. 	[½ M] which shows
	CHO COOH	
	$(CHOH)_4 + [O] \xrightarrow{Bromine}{Water} (CHOH)_4$	[1 M]
	CH2OHCH2OHGlucoseGluconic acid	[1 M]
	OR	
29. •	(a) Se + 4HNO ₃ $\xrightarrow{\text{Hot}}$ H ₂ SeO ₃ + 4NO ₂ + H ₂ O	[1 M]
	(b) Se + $2Cl_2 \longrightarrow SeCl_4$	[1 M]
•	(i) $_{24}$ Cr : electronic configuration [Ar]3d ⁵ 4s ¹	$[\frac{1}{2}M]$
	(ii) Different possible oxidation states of Cr are +1 (2d ⁵) +2(2d ⁴) +2(2d ³) +4(2d ²) +5(2d ¹) and +6(2d ⁰)	[1/ M]
	+1 $(3d^5)$, +2 $(3d^4)$, +3 $(3d^3)$, +4 $(3d^2)$, +5 $(3d^1)$ and +6 $(3d^0)$ Although in +1 state, Cr gets extra stability of half filled $3d^5$ orbital, it does not exhibit common except with pyridine Cr ⁺⁴ and Cr ⁺⁵ are unstable oxidation states.	$[\frac{1}{2} M]$ it +1 state in $[\frac{1}{2} M]$
	(iii) Cr^{+6} is the most stable state due to inert gas electronic configuration and forms salts li	
		$[\frac{1}{2}M]$
•	Vitamins are classified into two types	F1 /) / 7
	 (i) Water soluble vitamins (eg. B and C) (ii) Fat soluble vitamins (eg. A, D, E, K and P) 	[½ M] [½ M]
	Guru Aanklan 8 Website : www.guruaanklan	lan.com