

	GuruAanklan / HSC Examination / Grand Test / Maths C	ode / Set-A / Solutions
8.	$\cos x = -\frac{1}{2}$	
	We know that	
	$\cos\frac{\pi}{3} = \frac{1}{2}$	
	We know that	
	$\cos(\pi + \theta) = -\cos \theta$, $\cos(\pi - \theta) = -\cos \theta$ (1)	
	$Put x = \frac{\pi}{3} in (1)$	
	$\cos\left(\pi + \frac{\pi}{3}\right) = \cos\left(\pi - \frac{\pi}{3}\right) = -\cos\frac{\pi}{3}$	[1M]
	$\cos\left(\frac{4\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right) = -\cos\frac{\pi}{3}$	[1 M]
	$\frac{4\pi}{3}, \frac{2\pi}{3} \in [0, 2\pi)$	
	\therefore $x = \frac{4\pi}{3}$, $x = \frac{2\pi}{3}$ are principal solution.	[1 M]
9.	In \triangle ABC	
	$\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{1 + 3 - 4}{2 \times 1 \times \sqrt{3}} = 0^{\circ} \Longrightarrow A = \frac{\pi^c}{2}$	[1 M]
	$\cos B = \frac{c^2 + a^2 - b^2}{2ca} = \frac{3 + 4 - 1}{2 \times \sqrt{3} \times 2} = \frac{6}{4\sqrt{3}} = \frac{\sqrt{3}}{2} \implies B = \frac{\pi^c}{6}$	
	$\cos^2 \mathbf{A} + \cos^2 \mathbf{B} + \cos^2 \mathbf{c} = 1$	
	$0 + \frac{3}{4} + \cos^2 c = 1$	
	$\cos^2 c = 1 - \frac{3}{4} = \frac{1}{4}$	
	$\cos = \frac{1}{2} \implies c = \frac{\pi}{3}$	[1 M]
	Guru Aanklan ²	Website : www.guruaanklan.com

GuruAanklan / HSC Examination / Grand Test / Maths Code / Set-A / Solutions Let a, b, c are direction ratios of a vector prependicular to the two lines having direction ratios are -2, 1, -1 10. and -3, -4, 1. -2a + b - c = 0...(1) -3a - 4b + c = 0...(2) [1 M] By Cramers' rule $\frac{a}{\begin{vmatrix} 1 & -1 \\ -4 & 1 \end{vmatrix}} = \frac{-b}{\begin{vmatrix} -2 & -1 \\ -3 & 1 \end{vmatrix}} = \frac{c}{\begin{vmatrix} -2 & 1 \\ -3 & -4 \end{vmatrix}$

 $\frac{a}{-3} = \frac{b}{5} = \frac{c}{11}$ \therefore a = -3, b = 3, c = 11

 $\frac{a}{1-4} = \frac{-b}{-2-3} = \frac{c}{8+3}$

 $\frac{a}{-3} = \frac{-b}{-5} = \frac{c}{11}$

11.
$$y = x^{e^x}$$

taking log on both side

 $\log y = \log x^{e^x}$ $\log y = e^x \log x$ differentiating w.r.t. x

$$\frac{1}{y}\frac{dy}{dx} = e^{x}\frac{d}{dx}\log x + \log x\frac{d}{dx}e^{x}$$
[1 M]

$$\frac{dy}{dx} = y\left[e^{x}\cdot\frac{1}{x} + \log x \cdot e^{x}\right]$$

$$= y \cdot e^{x}\left[\frac{1}{x} + \log x\right]$$

$$= e^{e^{x}} \cdot e^{x}\left[\frac{1}{x} + \log x\right]$$
[1 M]
12. $f(x) = x^{2} + 2x - 5$
[1 M]
diff w.r.t x
 $f'(x) = 2x + 2$
[1 M]
 $\therefore f'(x) > 0$
 $2x + 2 > 0$
 $2x > -2$
 $x \ge -1$
[1 M]

[1 M]

[1 M]

Guru Aanklan

Website : www.guruaanklan.com

GuruAanklan / HSC Examination / Grand Test / Math	s Code / Set-A / Solutions
13. $I = \int \frac{e^{x-1} + x^{e-1}}{e^x + x^e} dx$	
Let $\theta = e^{x} + x^{e}$	
$\frac{d\theta}{dx} = e^x + e \cdot x^{e^{-1}}$	
ux ux	
$d\theta = e(e^{x-1} + x^{e-1}) dx$	
$\frac{1}{e}d\theta = (e^{x-1} + x^{e-1})dx$	[1 M]
$\therefore I = \int \frac{\frac{1}{e} d\theta}{\theta}$	
$=rac{1}{e}\intrac{d\theta}{ heta}$	
$=\frac{1}{e}\log \theta +c$	
$=\frac{1}{e}\log e^{x} + x^{e} + c$	[1 M]
OR	
$I = \int \frac{\sec \theta}{\sec \theta + \tan \theta} d\theta$	
$= \int \frac{\sec \theta}{\sec \theta + \tan \theta} \times \frac{\sec \theta - \tan \theta}{\sec \theta - \tan \theta} d\theta$	[1 M]
$=\int \frac{\sec^2 \theta - \sec \theta \tan \theta}{\sec^2 \theta - \tan^2 \theta} d\theta$	
$= \int (\sec^2 \theta - \sec \theta \tan \theta) d\theta$	
$= \tan \theta - \sec \theta + c$	[1 M]
14. $\int_{0}^{a} (2x + 1)dx = 2$	
$\left[\frac{2x^2}{2} + x\right]_0^a = 2$	[1 M]
$\begin{bmatrix} x^2 + x \end{bmatrix}_0^a = 2$ $a^2 + a = 2$	
$a^2 + a - 2 = 0$	
$a^{2} + 2a - a - 2 = 0$ a(a + 2) - 1(a + 2) = 0	
(a-1)(a+2)=0	
a-1=0 OR a+2=0 a=1 OR a=-2	[1 M]
Guru Aanklan 4	Website : www.guruaanklan.com

GuruAanklan / HSC Examination / Grand Test / Maths Code / Set-A / Solutions

SECTION-C

15. Equation of given lines are $5x^2 - 8xy + 3y^2 = 0$ Comparing with $ax^2 + 2hxy + by^2 = 0$ a = 5, 2h = -8, b = 3a = 5, h = -4, b = 3Let m₁ and m₂ are slope of lines $m_1 + m_2 = \frac{-2h}{b}, \quad m_1 m_2 = \frac{a}{b}$ $m_1 + m_2 = \frac{8}{3}, m_1 m_2 = \frac{5}{3}$ [1 M] Since required lines are \perp^{ar} to given lines \therefore Slopes of required lines are $\frac{-1}{m_1}$ and $\frac{-1}{m_2}$. Since required lines are passing through origin. Equation of lines are ... $y = \frac{-1}{m_1}x$ and $y = \frac{-1}{m_2}x$ $m_1 y = -x$ and $m_2 y = -x$ $x + m_1 y = 0$ and $x + m_2 y = 0$ [1 M] : Joint equation of lines is $(\mathbf{x} + \mathbf{m}_1 \mathbf{y}) \cdot (\mathbf{x} + \mathbf{m}_2 \mathbf{y}) = \mathbf{0}$ $x^2 + m_2 xy + m_1 xy + m_1 m_2 y^2 = 0$ $x^{2} + (m_{1} + m_{2})xy + m_{1}m_{2}y^{2} = 0$ $x^{2} + \frac{8}{3}xy + \frac{5}{3}y^{2} = 0$ $3x^2 + 8xy + 5y^2 = 0$ [1 M] This is required equation of lines. 16. Equation of lines are $L_1: \frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$...(1) $L_2: \frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$...(2) From(1) and(2) $x_1 = -1, y_1 = -1, z_1 = -1$ $a_1 = 7$, $b_1 = -6$, $c_1 = 1$ $x_2 = 3$, $y_2 = 5$ $z_2 = 7$ $a_2 = 1$, $b_2 = -2$, $c_2 = 1$ [1 M] **Guru Aanklan** Website : www.guruaanklan.com

GuruAanklan / HSC Examination / Grand Test / Maths Code / Set-A / Solutions

Shortest distance =
$$\begin{vmatrix} \frac{x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$$

$$= \begin{vmatrix} \frac{4}{\sqrt{(M_{11})^2 + (M_{12})^2 + (M_{13})^2}} \end{vmatrix}$$

$$= \begin{vmatrix} \frac{4}{\sqrt{(-4)^2 + (6)^2 + (-8)^2}} \\ \frac{4(-4) - 6(6) + 8(-8)}{\sqrt{(-4)^2 + (6)^2 + (-8)^2}} \end{vmatrix}$$

$$= \begin{vmatrix} \frac{4(-4) - 6(6) + 8(-8)}{\sqrt{16 + 36 + 64}} \end{vmatrix}$$

$$= \begin{vmatrix} -16 - 36 - 64 \\ \sqrt{116} \end{vmatrix}$$

$$= \begin{vmatrix} -16 - 36 - 64 \\ \sqrt{116} \end{vmatrix}$$

$$= \begin{vmatrix} -\sqrt{166} \\ = \sqrt{166} \ \text{unit}$$
[1 M]

17. Let $\overline{a} = \hat{i} + \hat{j} - 2\hat{k}$, $\overline{b} = \hat{i} + 2\hat{j} + \hat{k}$, $\overline{c} = 2\hat{i} - \hat{j} + \hat{k}$ are the three points through which plane passes. \therefore Equation of plane is

$$(\overline{\mathbf{r}} - \overline{\mathbf{a}}) \cdot (\overline{\mathbf{a}} \times \overline{\mathbf{b}} + \overline{\mathbf{b}} \times \overline{\mathbf{c}} + \overline{\mathbf{c}} \times \overline{\mathbf{a}}) = 0 \qquad \dots(1) \qquad [1 \text{ M}]$$

$$\overline{\mathbf{a}} \times \overline{\mathbf{b}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 1 & -2 \\ 1 & 2 & 1 \end{vmatrix} = \hat{\mathbf{i}}(1 + 4) - \hat{\mathbf{j}}(1 + 2) + \hat{\mathbf{k}}(2 - 1) = 5\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + \hat{\mathbf{k}}$$

$$\overline{\mathbf{b}} \times \overline{\mathbf{c}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 2 & 1 \\ 2 & -1 & 1 \end{vmatrix} = \hat{\mathbf{i}}(3) - \hat{\mathbf{j}}(-1) + \hat{\mathbf{k}}(-5) = 3\hat{\mathbf{i}} + \hat{\mathbf{j}} - 5\hat{\mathbf{k}}$$

$$\overline{\mathbf{c}} \times \overline{\mathbf{a}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 2 & -1 & 1 \\ 1 & 1 & -2 \end{vmatrix} = \hat{\mathbf{i}}(1) - \hat{\mathbf{j}}(-5) + \hat{\mathbf{k}}(2 + 1) = \hat{\mathbf{i}} + 5\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$$

$$(\overline{\mathbf{a}} \times \overline{\mathbf{b}}) + (\overline{\mathbf{b}} \times \overline{\mathbf{c}}) + (\overline{\mathbf{c}} \times \overline{\mathbf{a}}) = (5\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + \hat{\mathbf{k}}) + (3\hat{\mathbf{i}} + \hat{\mathbf{j}} - 5\hat{\mathbf{k}}) + (\hat{\mathbf{i}} + 5\hat{\mathbf{j}} + 3\hat{\mathbf{k}}) \qquad [1 \text{ M}]$$

$$= 9\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - \hat{\mathbf{k}}$$
Website : www.guruaanklan.com

GuruAanklan / HSC Examination / Grand Test / Maths Code / Set-A / Solutions	
From(1)	
$[\overline{\mathbf{r}} - (\hat{\mathbf{i}} + \hat{\mathbf{j}} - 2\hat{\mathbf{k}})] \cdot (9\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - \hat{\mathbf{k}}) = 0$	
$\overline{r} \cdot (9\hat{i} + 3\hat{j} - \hat{k}) - (9 + 3 + 2) = 0$	
$\overline{\mathbf{r}} \cdot (9\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - \hat{\mathbf{k}}) - 14 = 0$	
$\overline{\mathbf{r}} \cdot (9\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - \hat{\mathbf{k}}) = 14$	[1 M]
OR	
Equation of lines are	
$L_1: \frac{x-2}{1} = \frac{y-4}{4} = \frac{z-6}{7} \qquad \dots(1)$	
L ₂ : $\frac{x+1}{3} = \frac{y+3}{5} = \frac{z+5}{7}$ (2)	
From (1) $x_1 = 2$, $y_1 = 4$, $z_1 = 6$, $a_1 = 1$, $b_1 = 4$, $c_1 = 7$ $x_2 = -1$, $y_2 = -3$, $z_2 = -5$, $a_2 = 3$, $b_2 = 5$, $c_2 = 7$	[1 M]
$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$	
$= \begin{vmatrix} 2 - (-1) & 4 - (-3) & 6 + 5 \\ 1 & 4 & 7 \\ 3 & 5 & 7 \end{vmatrix}$	
$= \begin{vmatrix} 3 & 7 & 11 \\ 1 & 4 & 7 \\ 3 & 5 & 7 \end{vmatrix}$	[1 M]
= 3(28 - 35) - 7(7 - 21) + 11(5 - 12) = 3(-7) - 7(-14) + 11(-7) = -21 + 98 - 77 = -98 + 98	
 = 0 Lines L_1 and L_2 are coplanar. Equation of plane containing L_1 and L_2 are	[1 M]
$\begin{vmatrix} \mathbf{x} - \mathbf{x}_1 & \mathbf{y} - \mathbf{y}_1 & \mathbf{z} - \mathbf{z}_1 \end{vmatrix}$	
$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0$	
$\begin{vmatrix} x - 2 & y - 4 & z - 6 \\ 1 & 4 & 7 \\ 3 & 5 & 7 \end{vmatrix} = 0$	
Guru Aanklan 7 Website : www.guruaankl	an.com

GuruAanklan / HSC Examination / Grand Test / Maths Code / Set	-A / Solutions
(x-2)(28-35) - (y-4)(7-21) + (z-6)(5-12) = 0	
(x-2)(-7) - (y-4)(-14) + (z-6)(-7) = 0	
-7x + 14 + 14y - 56 - 7z + 42 = 0	
-7x + 14y - 7z = 0	
$\mathbf{x} - 2\mathbf{y} + \mathbf{z} = 0$	[1 M]
This is required equation of plane.	
18. Given:	
$x^5 \cdot y^7 = (x + y)^{12}$	
taking log on both side, we get	
$\log(x^5 \cdot y^7) = \log(x+y)^{12}$	[1 M]
$\log x^5 + \log y^7 = 12 \log (x + y)$	
$5 \log x + 7\log y = 12 \log(x + y)$	
differentiating w.r.t. x	
$5 \cdot \frac{1}{x} + 7 \times \frac{1}{y} \frac{dy}{dx} = \frac{12}{x+y} \left(1 + \frac{dy}{dx}\right)$	
$\frac{5}{x} + \frac{7}{y}\frac{dy}{dx} = \frac{12}{x+y} + \frac{12}{x+y}\frac{dy}{dx}$	[1 M]
$\frac{7}{y}\frac{dy}{dx} - \frac{12}{x+y}\frac{dy}{dx} = \frac{12}{x+y} - \frac{5}{x}$	
$\left(\frac{7}{y} - \frac{12}{x+y}\right)\frac{dy}{dx} = \left(\frac{12}{x+y} - \frac{5}{x}\right)$	
$\frac{7x + 7y - 12y}{y(x+y)}\frac{dy}{dx} = \frac{12x - 5x - 5y}{x(x+y)}$	
$\frac{7x - 5y}{y} \frac{dy}{dx} = \frac{7x - 5y}{x}$	
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x}$	[1 M]
OR	
Let $u = \cos^{-1}(\sin x)$ $v = \tan^{-1} x$	
$u = \frac{\pi}{2} - x \qquad v = \tan^{-1} x$	[1 M]
$\frac{\mathrm{d}u}{\mathrm{d}x} = -1 \qquad \qquad \frac{\mathrm{d}v}{\mathrm{d}x} = \frac{1}{1+x^2}$	[1 M]
By parametric differentiation	
$\frac{du}{dv} = \frac{du/dx}{dv/dx} = \frac{-1}{1/(1+x^2)} = -(1+x^2)$	[1 M]
Guru Aanklan 8 Website	: www.guruaanklan.com

GuruAanklan / HSC Exar	mination / Grand Te	st / Maths	Code / Set-A /	Solutions
P_{\cdot} x $P(x)$	X	P(x)	x P(x)	$x^2 P(x)$
-2 0.1	-2	0.1	-0.2	0.4
-1 k	-1	0.1	-0.1	0.1
0 0.2	0	0.2	0	0
1 2k	1	0.2	0.2	0.2
2 0.3	2	0.3	0.6	1.2
3 <u>k</u>	3	0.1	0.3	0.9
0.6 + 4k			E(x) = 0.8	$E(x^2) = 2.8$
Since P is p.m.t.	H	E(x) = 0.8		
$\therefore \qquad \sum P_i = 1$	V	$V(\mathbf{x}) = \mathbf{E}(\mathbf{x}^2)$	$-(E(x))^{2}$	
0.6 + 4k = 1		= 2.8 -	$(0.8)^2$	
4k = 1 - 0.6		= 2.8 -	0.64	
4k = 0.4		= 2.16		

20. Experiment : Hitting a target in 10 shots.

X : number of shots hit the target

P: Probability that a short hit the target

p = 0.2, n = 10, q = 1 - P = 0.8

 \therefore X ~ B (10, 0.2)

k = 0.1

p.m.t. of x is

 $P(x=r) = {}^{10}c_r (0.2)^r (0.8)^{10-r} \qquad ..(1)$

Probability that target will be hit at least twice

$$= P(x \ge 2)$$

= 1 - P(x < 2)
= 1 - {P(x = 0) + P(x = 1)}
= 1 - {¹⁰c₀ (0.2)⁰ (0.8)¹⁰ + ¹⁰c₁ (0.2)¹ (0.8)¹⁰⁻¹}
= 1 - {(0.8)¹⁰ + (10 × 0.2 × 0.8⁹)}
= 1 - {(0.8)¹⁰ + 2 × (0.8)⁹}
= 1 - {(0.8)⁹ (0.8 + 2)}
= 1 - (0.8)⁹ (2.8)
= 1 - 0.3758
= 0.6242

Guru Aanklan

	GuruAanklan / HSC Examination / C	Grand Test /	Maths	Code / S	et-A / S	Solutio	ns
	SI	ECTION - I)				
21.	p : switch s_1 is closed						[1 M]
	q : switch s_2 is closed						
	Symbolic form :						
	$(p \land {\sim} q) \lor ({\sim} p \land q) \lor ({\sim} p \land {\sim} q)$						[1 M]
	$= (p \land \neg q) \lor [(\neg p) \land (q \lor \neg q)]$	Distributiv	e law				
	$= (p \land \neg q) \lor [\neg p \land T]$	Compleme	ent law				
	$= (p \land \neg q) \lor \neg p$	Identity lav	V				
	$= (p \lor \neg p) \land (\neg q \lor \neg p)$	Distributiv	e law				
	$= T \land (\sim q \lor \sim p)$	Compleme	ent law				
	$= \sim q \lor \sim p$	Identity law	v				[1 M]
	\therefore simplified form : $\sim q \lor \sim p$						
	S'2						
	S'1						
	S'1						[1 M]
22.	Let cost of one dozen pencil, pen and eraser	r are Rs x, y a	nd z.				
	Given that						
	4x + 3y + 2z = 60						
	2x + 4y + 6z = 90						
	6x + 2y + 3z = 70						
	Matrix form						
	$\begin{bmatrix} 4 & 3 & 2 \\ 2 & 4 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 60 \\ 90 \end{bmatrix}$						
	$\begin{vmatrix} 2 & 4 & 6 \end{vmatrix} \begin{vmatrix} y \end{vmatrix} = \begin{vmatrix} 90 \end{vmatrix}$						[1 M]
	$\begin{bmatrix} 6 & 2 & 3 \end{bmatrix} \begin{bmatrix} z \\ z \end{bmatrix} \begin{bmatrix} 70 \end{bmatrix}$						[]
	(1)						
	$\left(\frac{1}{4}R_{1}\right)$						
		R	2 2	4	6	90	
	$\begin{vmatrix} 1 & \frac{3}{4} & \frac{1}{2} \end{vmatrix} \begin{bmatrix} x \end{bmatrix} \begin{bmatrix} 15 \end{bmatrix}$		-2	3	-1	20	
	$\begin{vmatrix} 4 & 2 \\ 2 & 4 & 6 \end{vmatrix} \begin{vmatrix} x \\ y \end{vmatrix} = \begin{vmatrix} 10 \\ 90 \end{vmatrix}$	2R	-1 -2	$-\frac{3}{2}$	-1	-30	
	$\begin{bmatrix} 1 & \frac{3}{4} & \frac{1}{2} \\ 2 & 4 & 6 \\ 6 & 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 15 \\ 90 \\ 70 \end{bmatrix}$		0	$\frac{5}{2}$	5	60	
			0	2	5	00	[1M]
	$R_2 - 2R_1, R_3 - 6R_1$				1		
	$\begin{vmatrix} 1 & \frac{3}{4} & \frac{1}{2} \end{vmatrix}$	R	6	2	3	70	J
	$\begin{vmatrix} 4 & 2 \\ 5 & \end{vmatrix} x \begin{vmatrix} 15 \\ 15 \end{vmatrix}$	6R	1 -6	$-\frac{9}{2}$	-3	-90	
	$\begin{bmatrix} 1 & \frac{3}{4} & \frac{1}{2} \\ 0 & \frac{5}{2} & 5 \\ 0 & -\frac{5}{2} & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 15 \\ 60 \\ -20 \end{bmatrix}$						
	$\begin{bmatrix} 5 \\ -5 \end{bmatrix} \begin{bmatrix} z \\ -20 \end{bmatrix}$		0	$-\frac{5}{2}$	0	-20	
	$\begin{bmatrix} 0 & -\frac{1}{2} & 0 \end{bmatrix}$		-	2			
	5						
	$\mathbf{R}_3 + \frac{5}{2}\mathbf{R}_2$						
	Guru Aanklan	10		Websit	te : wwv	v.gurua:	anklan.com
	Guiu Aalikiali			10030		Juruan	

GuruAanklan / HSC Examination / Grand Test / Maths Co	ode / Set-A / Solutions
$\begin{bmatrix} 1 & \frac{3}{4} & \frac{1}{2} \\ 0 & \frac{5}{2} & 5 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 15 \\ 60 \\ 40 \end{bmatrix}$	[1 M]
$\therefore x + \frac{3}{4}y + \frac{z}{2} = 15$ (1)	
$\frac{5}{2}y + 5z = 60 \qquad(2)$ $5z = 40 \qquad(3)$	
From (3) $\Rightarrow z = 8$ From (2)	
$\frac{5}{2}y + 40 = 60$	
$\frac{5}{2}y = 60 - 40$ $\frac{5}{2}y = 20$	
$\frac{1}{2}y = 20$ $y = \frac{40}{5} = 8$	
From (1)	
$x + \frac{3}{4} \times 8 + \frac{8}{2} = 15$ x + 6 + 4 = 15	
x + 10 = 15 x = 15 - 10 x = 5	
Thus cost of one dozen pencil, pen and eraser are Rs 5, 8 and 8 OR	3. [1 M]
Step 1: Standard form x + y + z = -1 x - y + z = 2 x + y - z = 3	
Step 2: Matrix form $ \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix} $ A X = B(1)	[1 M]
$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix} X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} B = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$	[1 M]
Guru Aanklan	Website : www.guruaanklan.com

GuruAanklan / HSC Examination / Grand Test / Maths C	ode / Set-A / Solutions
Step 3 : Calculation of A ⁻¹	
$ \mathbf{A} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix}$	
= 1(1-1) - 1(-1-1) + 1(1+1)	
= 0 + 2 + 2	
= 4	
$\neq 0$	
(2) $\mathbf{A} \cdot \mathbf{A}^{-1} = \mathbf{I}$	
$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix} \mathbf{A}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	
$\begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	
$\begin{bmatrix} I & I & -I \end{bmatrix} \begin{bmatrix} 0 & 0 & I \end{bmatrix} \\ R_2 - R_1, R_3 - R_1$	
$\begin{vmatrix} 1 & 1 & 1 \\ 0 & -2 & 0 \end{vmatrix} A^{-1} = \begin{vmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \end{vmatrix}$	
$\begin{bmatrix} 1 & 1 & 1 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix} \mathbf{A}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
$-\frac{1}{2}R_2, -\frac{1}{2}R_3$	
=	
$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{A}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ +\frac{1}{2} & -\frac{1}{2} & 0 \\ \frac{1}{2} & 0 & -\frac{1}{2} \end{bmatrix}$	
$\begin{vmatrix} 0 & 1 & 0 \end{vmatrix} A^{-1} = \begin{vmatrix} +\frac{1}{2} & -\frac{1}{2} & 0 \end{vmatrix}$	
$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 2 & 2 & 2 \\ 1 & 0 & 1 \end{bmatrix}$	
$\begin{bmatrix} \frac{1}{2} & 0 & -\frac{1}{2} \end{bmatrix}$	
$R_1 - R_2$,	
$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{A}^{-1} = \begin{bmatrix} \frac{1}{2} & +\frac{1}{2} & 0 \\ +\frac{1}{2} & -\frac{1}{2} & 0 \\ \frac{1}{2} & 0 & -\frac{1}{2} \end{bmatrix}$	
$\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}$	
$\begin{vmatrix} 0 & 1 & 0 \end{vmatrix} A^{-1} = \begin{vmatrix} +\frac{1}{2} & -\frac{1}{2} & 0 \end{vmatrix}$	
$\begin{bmatrix} -\frac{1}{2} & 0 & -\frac{1}{2} \end{bmatrix}$	
$R_{1} - R_{3}$	
$\begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$	
$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & \pm \frac{1}{2} & \pm \frac{1}{2} \end{bmatrix}$	
$\begin{vmatrix} 0 & 1 & 0 \end{vmatrix} A^{-1} = \begin{vmatrix} +\frac{1}{2} & -\frac{1}{2} & 0 \end{vmatrix}$	
	[1 M]
$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{A}^{-1} = \begin{bmatrix} 0 & +\frac{1}{2} & +\frac{1}{2} \\ +\frac{1}{2} & -\frac{1}{2} & 0 \\ \frac{1}{2} & 0 & -\frac{1}{2} \end{bmatrix}$	
$\begin{vmatrix} 0 & +\frac{1}{2} & \frac{1}{2} \end{vmatrix}$	
$A^{-1} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$	
$A = \begin{vmatrix} +\frac{1}{2} & -\frac{1}{2} & 0 \end{vmatrix}$	[1 M]
$\mathbf{A}^{-1} = \begin{bmatrix} 0 & +\frac{1}{2} & \frac{1}{2} \\ +\frac{1}{2} & -\frac{1}{2} & 0 \\ \frac{1}{2} & 0 & -\frac{1}{2} \end{bmatrix}$	- J
Guru Aanklan ¹²	Website : www.guruaanklan.com

$\begin{array}{c} \text{(3)} \text{From}(1) \\ \text{A X} = \text{B} \end{array}$	
$A^{-1}AX = A^{-1}B$	
$X = A^{-1} B$	
$\begin{vmatrix} 0 & +\frac{1}{2} & \frac{1}{2} \end{vmatrix}$	
$\begin{vmatrix} 2 & 2 \\ 1 & 1 \end{vmatrix} \begin{bmatrix} -1 \end{bmatrix}$	
$= \begin{bmatrix} 0 & +\frac{1}{2} & \frac{1}{2} \\ +\frac{1}{2} & -\frac{1}{2} & 0 \\ \frac{1}{2} & 0 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$	
$\begin{vmatrix} 1 \\ -1 \end{vmatrix} = 0 = -\frac{1}{2} \begin{vmatrix} 3 \\ -1 \end{vmatrix}$	
$\begin{bmatrix} 0 & \pm 1 & \frac{3}{2} \end{bmatrix}$	
$\begin{vmatrix} -\frac{1}{2} & -1 & +0 \end{vmatrix}$	
$= \begin{bmatrix} 0 & +1 & \frac{3}{2} \\ -\frac{1}{2} & -1 & +0 \\ -\frac{1}{2} & +0 & -\frac{3}{2} \end{bmatrix}$	
$\begin{bmatrix} 5\\ -5 \end{bmatrix}$	
$= \begin{bmatrix} \frac{5}{2} \\ -\frac{3}{2} \\ -2 \end{bmatrix}$	
$= \left -\frac{3}{2} \right $	
$=\frac{5}{2}, y = -\frac{3}{2}, z = -2$	[1 M]
2 2 23. In \triangle ABC, all angles are not obtuse.	
Let $\angle B$ be acute. There are three cases on $\angle C$.	
(i) $\angle C$ can be acute (ii) $\angle C$ can be obtuse (iii) $\angle C = 90^{\circ}$ A A	
$B \xrightarrow{\square} C \qquad B \xrightarrow{\square} C \qquad B \xrightarrow{\square} D \qquad B \xrightarrow{\square} C = C$	D
(1) (2) (3) From $(1), (2)$ and (3)	
$\sin B = \frac{AD}{AB} \implies \sin B = \frac{AD}{c} \implies AD = c \sin B \qquad(1)$	[1 M]
From (1)	
$\sin C = \frac{AD}{AC} \implies \sin C = \frac{AD}{b} \implies AD = b \sin C \qquad(2)$	
AC b From (2)	
	·[1M]
From (3)	
$\sin C = \sin 90^{\circ} = \frac{AD}{AD} = \frac{AD}{AC} \implies \sin C = \frac{AD}{b} \implies AD = b \sin C \dots (4)$	
Guru Aanklan 13 Website : www.guruaanklan.co	m

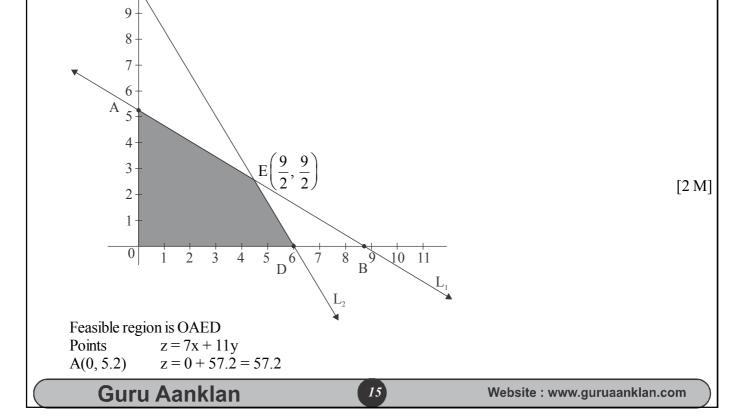
If we can show that $\frac{a}{\sin A} = \frac{b}{\sin B} \qquad(6)$ From (5) and (6) $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \qquad [1 M]$ 24. Given A(\overline{a}), B(\overline{b}), C(\overline{c}) and D(\overline{d}) are coplanar. $\Rightarrow \overline{AB} \overline{AC}$ and \overline{AD} are coplanar. $\therefore [\overline{AB} \overline{AC} \overline{AD}] = 0 \qquad [1 M]$ $[\overline{b} - \overline{a} - \overline{c} - \overline{a} - \overline{d} - \overline{a}] = 0$ $[\overline{b} \ \overline{c} - \overline{a} \ \overline{d} - \overline{a}] - [\overline{b} \ \overline{a} \ \overline{d} - \overline{a}] - [\overline{a} \ \overline{c} - \overline{a}] + [\overline{a} \ \overline{a} \ \overline{d} - \overline{a}] = 0$ $[\overline{b} \ \overline{c} - \overline{a} \ \overline{d} - \overline{a}] - [\overline{b} \ \overline{c} \ \overline{a}] - [\overline{b} \ \overline{a} \ \overline{d}] + [\overline{b} \ \overline{a} \ \overline{a}]$ $- [\overline{a} \ \overline{c} \ \overline{d}] + [\overline{a} \ \overline{c} \ \overline{a}] + [\overline{a} \ \overline{a} \ \overline{d} - \overline{a}] = 0$ $[\overline{b} \ \overline{c} \ \overline{d}] - [\overline{b} \ \overline{c} \ \overline{a}] - [\overline{b} \ \overline{a} \ \overline{d}] - 0 - [\overline{a} \ \overline{c} \ \overline{d}] + 0 + 0 = 0 \qquad [1 M]$ $[\overline{b} \ \overline{c} \ \overline{d}] + [\overline{a} \ \overline{b} \ \overline{d}] + [\overline{c} \ \overline{a} \ \overline{d}] = [\overline{b} \ \overline{c} \ \overline{a}]$ $[\overline{b} \ \overline{c} \ \overline{d}] + [\overline{a} \ \overline{b} \ \overline{d}] + [\overline{c} \ \overline{a} \ \overline{d}] = [\overline{b} \ \overline{c} \ \overline{a}]$ $[\overline{b} \ \overline{c} \ \overline{d}] + [\overline{a} \ \overline{b} \ \overline{d}] + [\overline{c} \ \overline{a} \ \overline{d}] = [\overline{b} \ \overline{c} \ \overline{a}]$ $[\overline{b} \ \overline{c} \ \overline{d}] + [\overline{a} \ \overline{b} \ \overline{d}] + [\overline{c} \ \overline{a} \ \overline{d}] = [\overline{b} \ \overline{c} \ \overline{a}]$ $[\overline{b} \ \overline{c} \ \overline{d}] + [\overline{a} \ \overline{b} \ \overline{d}] + [\overline{c} \ \overline{a} \ \overline{d}] = [\overline{a} \ \overline{b} \ \overline{c}]$ [1 M] $Let A, B and C be the vertices of a triangle. Let AD, BE and CF be the calitudes of the triangle ABC, therefore AD L BC, BF \perp AC, CF \perp AB.[1 M]Let \overline{a}, \overline{b}, \overline{c}, \overline{d}, \overline{c}, \overline{BF} \perp AC(1)To show that the altitudes AD, BE and CF are concurrent, It is sufficient to show that the altitude CF passesthrough the point P We will have to prove that \overline{CF} and \overline{CP} are collinear vectors. This can be achieved byshowing \overline{CP} and \overline{AP}.Now from (1) we have\overline{AP} \perp BC and \overline{BP} \perp \overline{AC}\overline{AP} \cdot BC = 0 and \overline{BP} + \overline{AC}$	GuruAanklan / HSC Examination / Grand Test / Maths Code / Set-A / Soluti	ons
$\ _{\mathbf{y}} \text{ we can show that} \qquad \frac{\mathbf{a}}{\sin \mathbf{A}} = \frac{\mathbf{b}}{\sin \mathbf{B}} \qquad \dots (6)$ From (S) and (6) $\frac{\mathbf{a}}{\sin \mathbf{A}} = \frac{\mathbf{b}}{\sin \mathbf{B}} = \frac{\mathbf{c}}{\sin \mathbf{C}} \qquad $	From (1), (2), (3) and (4)	
$\frac{a}{\sin A} = \frac{b}{\sin B} \qquad(6)$ From (5) and (6) $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \qquad [1 M]$ 24. Given A(\overline{a}), B(\overline{b}), C(\overline{c}) and D(\overline{d}) are coplanar. $\Rightarrow \overline{AB} \overline{AC} \text{ and } \overline{AD} \text{ are coplanar.}$ $\therefore [\overline{AB} \overline{AC} \overline{AD}] = 0 \qquad [1 M]$ [$\overline{b} - \overline{a} \overline{c} - \overline{a} \overline{d} - \overline{a}] = 0$ [$\overline{b} \overline{c} - \overline{a} \overline{d} - \overline{a}] - [\overline{a} \overline{c} - \overline{a} \overline{d} - \overline{a}] = 0$ [$\overline{b} \overline{c} \overline{a} - \overline{a}] - [\overline{b} \overline{a} \overline{d} - \overline{a}] - [\overline{a} \overline{c} \overline{d} - \overline{a}] + [\overline{a} \overline{a} \overline{d} - \overline{a}] = 0$ [$\overline{b} \overline{c} \overline{d} - \overline{a}] - [\overline{b} \overline{c} \overline{d}] - [\overline{b} \overline{c} \overline{d}] + [\overline{b} \overline{a} \overline{a}]$ $- [\overline{a} \overline{c} \overline{d}] + [\overline{a} \overline{c} \overline{a}] + [\overline{a} \overline{a} \overline{d} - \overline{a}] = 0$ [$\overline{b} \overline{c} \overline{d}] - [\overline{b} \overline{c} \overline{a}] - [\overline{b} \overline{a} \overline{d}] - 0 - [\overline{a} \overline{c} \overline{d}] + 0 + 0 = 0$ [$\overline{b} \overline{c} \overline{d}] + [\overline{a} \overline{b} \overline{d}] + [\overline{c} \overline{a} \overline{d}] = [\overline{b} \overline{c} \overline{a}]$ [$\overline{b} \overline{c} \overline{d}] + [\overline{a} \overline{b} \overline{d}] + [\overline{c} \overline{a} \overline{d}] = [\overline{b} \overline{c} \overline{a}]$ [$\overline{b} \overline{c} \overline{d}] + [\overline{a} \overline{b} \overline{d}] + [\overline{c} \overline{a} \overline{d}] = [\overline{b} \overline{c} \overline{a}]$ [$\overline{b} \overline{c} \overline{d}] + [\overline{a} \overline{b} \overline{d}] + [\overline{c} \overline{a} \overline{d}] = [\overline{b} \overline{c} \overline{a}]$ [Let A, B and C be the vertices of a triangle. Let AD, BE and CF be the altitudes of the triangle ABC, therefore AD \perp BC, BF \perp AC, CF \perp AB. [I M] Therefore $\overline{AD} \perp BC, \overline{BF} \perp A\overline{C}$ (1) To show that the altitudes AD, BE and CF are concurrent, It is sufficient to show that the altitude F passes through the point P. We will have to prove that \overline{CF} and \overline{CP} are collinear vectors. This can be achieved by showing \overline{CP} and \overline{AP} . Now from (1) we have $\overline{AP} \perp BC and \overline{BP} \perp \overline{AC}$ $\overline{AP} \cdot \overline{BC} = 0 \text{ and } \overline{BP} \cdot \overline{AC} = 0$ ([1 M])	$c \sin B = b \sin C \implies \frac{b}{\sin B} = \frac{c}{\sin C} \qquad(5)$	[1 M]
From (5) and (6) $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ [1 M] 24. Given A(\bar{a}), B(\bar{b}), C(\bar{c}) and D(\bar{d}) are coplanar. $\Rightarrow \overline{AB} \overline{AC} \text{ and } \overline{AD} \text{ are coplanar.}$ $\therefore [AB \overline{AC} \overline{AD}] = 0$ [$\bar{b} - \bar{a} - \bar{a} - \bar{a} - \bar{a} - \bar{a} = 0$ [$\bar{b} - \bar{a} - \bar{a} - \bar{a} - \bar{a} = 0$ [$\bar{b} - \bar{c} - \bar{a} - \bar{a} - \bar{a} = 0$ [$\bar{b} - \bar{c} - \bar{a} - \bar{a} - \bar{a} = 0$ [$\bar{b} - \bar{c} - \bar{a} - \bar{a} - \bar{a} = 0$ [$\bar{b} - \bar{c} - \bar{a} - \bar{a} - \bar{a} = 0$ [$\bar{b} - \bar{c} - \bar{a} - \bar{a} = 0$ [$\bar{b} - \bar{c} - \bar{a} - \bar{a} = 0$ [$\bar{b} - \bar{c} - \bar{a} - \bar{a} = 0$ [$\bar{b} - \bar{c} - \bar{a} - \bar{a} = 0$ [$\bar{b} - \bar{c} - \bar{a} - \bar{a} = 0$ [$\bar{b} - \bar{c} - \bar{a} - \bar{a} = 0$ [$\bar{b} - \bar{c} - \bar{a} - \bar{a} = 0$ [$\bar{b} - \bar{c} - \bar{a} - \bar{a} = 0$ [$\bar{b} - \bar{c} - \bar{a} - \bar{a} = 0$ [$\bar{b} - \bar{c} - \bar{c} - \bar{c}$ [$\bar{b} - \bar{c} - \bar{c} - \bar{c} - \bar{c}$] [$\bar{b} - \bar{c} - \bar{c} - \bar{c} - \bar{c} - \bar{c} - \bar{c}$ [$\bar{b} - \bar{c} - $	$ _{y}$ we can show that	
From (5) and (6) $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ [1 M] 24. Given A(\bar{a}), B(\bar{b}), C(\bar{c}) and D(\bar{d}) are coplanar. $\Rightarrow \overline{AB} \overline{AC} \text{ and } \overline{AD} \text{ are coplanar.}$ $\therefore [AB \overline{AC} \overline{AD}] = 0$ [$\bar{b} - \bar{a} - \bar{a} - \bar{a} - \bar{a} - \bar{a} = 0$ [$\bar{b} - \bar{a} - \bar{a} - \bar{a} - \bar{a} = 0$ [$\bar{b} - \bar{c} - \bar{a} - \bar{a} - \bar{a} = 0$ [$\bar{b} - \bar{c} - \bar{a} - \bar{a} - \bar{a} = 0$ [$\bar{b} - \bar{c} - \bar{a} - \bar{a} - \bar{a} = 0$ [$\bar{b} - \bar{c} - \bar{a} - \bar{a} - \bar{a} = 0$ [$\bar{b} - \bar{c} - \bar{a} - \bar{a} = 0$ [$\bar{b} - \bar{c} - \bar{a} - \bar{a} = 0$ [$\bar{b} - \bar{c} - \bar{a} - \bar{a} = 0$ [$\bar{b} - \bar{c} - \bar{a} - \bar{a} = 0$ [$\bar{b} - \bar{c} - \bar{a} - \bar{a} = 0$ [$\bar{b} - \bar{c} - \bar{a} - \bar{a} = 0$ [$\bar{b} - \bar{c} - \bar{a} - \bar{a} = 0$ [$\bar{b} - \bar{c} - \bar{a} - \bar{a} = 0$ [$\bar{b} - \bar{c} - \bar{a} - \bar{a} = 0$ [$\bar{b} - \bar{c} - \bar{c} - \bar{c}$ [$\bar{b} - \bar{c} - \bar{c} - \bar{c} - \bar{c}$] [$\bar{b} - \bar{c} - \bar{c} - \bar{c} - \bar{c} - \bar{c} - \bar{c}$ [$\bar{b} - \bar{c} - $	$\frac{a}{a} = \frac{b}{a}$	
$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ [1 M] 24. Given A(\overline{a}), B(\overline{b}), C(\overline{c}) and D(\overline{d}) are coplanar. $\Rightarrow \overline{AB} \overline{AC} \text{ and } \overline{AD} \text{ are coplanar.}$ $\therefore [AB \overline{AC} \overline{AD}] = 0$ [1 M] $[\overline{b} - \overline{a} \overline{c} - \overline{a} \overline{d} - \overline{a}] = 0$ [$\overline{b} \overline{c} - \overline{a} \overline{d} - \overline{a}] = 0$ [$\overline{b} \overline{c} - \overline{a} \overline{d} - \overline{a}] - [\overline{a} \overline{c} - \overline{a} \overline{d} - \overline{a}] = 0$ [$\overline{b} \overline{c} \overline{d} - \overline{a}] - [\overline{b} \overline{a} \overline{d} - \overline{a}] - [\overline{a} \overline{c} \overline{d} - \overline{a}] + [\overline{a} \overline{a} \overline{d} - \overline{a}] = 0$ [$\overline{b} \overline{c} \overline{d}] - [\overline{b} \overline{c} \overline{a}] - [\overline{b} \overline{a} \overline{d}] + [\overline{b} \overline{a} \overline{a}]$ $- [\overline{a} \overline{c} \overline{d}] + [\overline{a} \overline{c} \overline{a}] + [\overline{a} \overline{a} \overline{d} - \overline{a}] = 0$ [$\overline{b} \overline{c} \overline{d}] - [\overline{b} \overline{c} \overline{a}] - [\overline{b} \overline{a} \overline{d}] - 0 - [\overline{a} \overline{c} \overline{d}] + 0 + 0 = 0$ [$1M$] [$\overline{b} \overline{c} \overline{d}] + [\overline{a} \overline{b} \overline{d}] + [\overline{c} \overline{a} \overline{d}] = [\overline{b} \overline{c} \overline{a}]$ [$\overline{b} \overline{c} \overline{d}] + [\overline{a} \overline{b} \overline{d}] + [\overline{c} \overline{a} \overline{d}] = [\overline{a} \overline{b} \overline{c}]$ [1 M] [$\overline{b} \overline{c} \overline{d}] + [\overline{a} \overline{b} \overline{d}] + [\overline{c} \overline{a} \overline{d}] = [\overline{a} \overline{b} \overline{c}]$ [1 M] [$\overline{b} \overline{c} \overline{d}] + [\overline{a} \overline{b} \overline{d}] + [\overline{c} \overline{a} \overline{d}] = [\overline{a} \overline{b} \overline{c}]$ [1 M] [Let A, B and C be the vertices of a triangle. Let AD, BF and CF be the abitudes of the triangle ABC, therefore AD \perp BC, BF \perp AC, CF \perp AB. [1 M] Let $\overline{a}, \overline{b}, \overline{c}, \overline{d}, \overline{c}, \overline{f}$ be the position vectors of A, B, C, D, F, F respectively. Let P be the point of intersection of the altitudes AD BE with $\overline{P} \ abt = abtitudes AD, BE and CF are concurrent, It is sufficient to show that the altitude CF passes through the point P. We will have to prove that \overline{CF} \ and \overline{CP} \ ac collinear vectors. This can be achieved by showing \overline{CP} \ ad \overline{AP}.Now from (1) we have\overline{AP} \perp BC \ ad \overline{BP} \perp \overline{AC} \overline{AP} \cdot \overline{BC} = 0 (\overline{p} - \overline{a}) \cdot (\overline{c} - \overline{b}) = 0 [1 M]$		
24. Given A(a), B(b), C(c) and D(d) are coplanar. $\Rightarrow \overline{AB} \overline{AC} \text{ and } \overline{AD} \text{ are coplanar.}$ $\therefore [\overline{AB} \overline{AC} \overline{AD}] = 0 \qquad [1 M]$ $[\overline{b} - \overline{a} - \overline{c} - \overline{a} - \overline{d} - \overline{a}] = 0$ $[\overline{b} - \overline{c} - \overline{a} - \overline{d} - \overline{a}] - [\overline{b} - \overline{a} - \overline{c} - \overline{a} - \overline{d} - \overline{a}] = 0$ $[\overline{b} - \overline{c} - \overline{a} - \overline{a}] - [\overline{b} - \overline{a} - \overline{a}] - [\overline{a} - \overline{c} - \overline{a} - \overline{d} - \overline{a}] = 0$ $[\overline{b} - \overline{c} - \overline{a}] - [\overline{b} - \overline{c} - \overline{a}] - [\overline{b} - \overline{a} - \overline{a}] - [\overline{a} - \overline{c} - \overline{a}] + [\overline{a} - \overline{a} - \overline{a}] = 0$ $[\overline{b} - \overline{c} - \overline{a}] - [\overline{b} - \overline{c} - \overline{a}] - [\overline{b} - \overline{a} - \overline{a}] + [\overline{a} - \overline{a}] + [\overline{a} - \overline{a} - \overline{a}] = 0$ $[\overline{b} - \overline{c} - \overline{a}] - [\overline{b} - \overline{c} - \overline{a}] - [\overline{b} - \overline{a} - \overline{a}] - 0 - [\overline{a} - \overline{c} - \overline{a}] + [\overline{a} - \overline{a} - \overline{a}] = 0$ $[\overline{b} - \overline{c} - \overline{a}] - [\overline{b} - \overline{c} - \overline{a}] - [\overline{b} - \overline{a} - \overline{a}] - 0 - [\overline{a} - \overline{c} - \overline{a}] + 0 + 0 = 0$ $[1 M]$ $[\overline{b} - \overline{c} - \overline{d}] + [\overline{a} - \overline{b} - \overline{d}] + [\overline{c} - \overline{a} - \overline{d}] = [\overline{b} - \overline{c} - \overline{a}]$ $[\overline{b} - \overline{c} - \overline{d}] + [\overline{a} - \overline{b} - \overline{d}] + [\overline{c} - \overline{a} - \overline{d}] = [\overline{a} - \overline{b} - \overline{c}]$ $[1 M]$ CR Let A, B and C be the vertices of a triangle. Let A, B and C be the vertices of a triangle. Let A, B and C be the vertices of A B, C, D, E, F respectively. Let P be the position vectors of A, B, C, D, E, F respectively. Let P be the position vectors of A, B, C, D, E, F respectively. Let P be the position vectors of A, B, C, D, E, F respectively. Let P be the position vectors of A, B, C, D, E, F respectively. Let P be the position vectors of A, B, C, D, E, F respectively. Let P be the position vectors of A, B, C, D, E, F respectively. Let P be the position vectors of A, B, C, D, E, F respectively. Let P be the position vectors of A, B, C, D, E, F respectively. Let P be the point of intersection of the altitudes AD BE with \overline{P} as the position vectors. [1 M] To show that the altitude AD, BE and CF are concurrent, It is sufficient to show that the altitude CF passes through the point P. We will have to prove that \overline{CF} and \overline{CP} are collinear vectors. This can be achieved by showing		
$\Rightarrow \overline{AB} \overline{AC} \text{ and } \overline{AD} \text{ are coplanar.}$ $\therefore [\overline{AB} \overline{AC} \overline{AD}] = 0 \qquad [1 M]$ $[\overline{b} - \overline{a} \overline{c} - \overline{a} \overline{d} - \overline{a}] = 0 \qquad [1 M]$ $[\overline{b} - \overline{a} \overline{c} - \overline{a} \overline{d} - \overline{a}] - [\overline{b} \overline{a} \overline{c} - \overline{a} \overline{d} - \overline{a}] = 0 \qquad [1 M]$ $[\overline{b} \overline{c} \overline{d} - \overline{a}] - [\overline{b} \overline{c} \overline{a}] - [\overline{b} \overline{a} \overline{d} - \overline{a}] - [\overline{a} \overline{c} \overline{d} - \overline{a}] + [\overline{a} \overline{a} \overline{d} - \overline{a}] = 0 \qquad [1 M]$ $[\overline{b} \overline{c} \overline{d}] - [\overline{b} \overline{c} \overline{a}] - [\overline{b} \overline{a} \overline{d}] + [\overline{b} \overline{a} \overline{a}] \qquad - [\overline{a} \overline{c} \overline{d}] + [\overline{a} \overline{c} \overline{a}] + [\overline{a} \overline{a} \overline{d} - \overline{a}] = 0 \qquad [1 M]$ $[\overline{b} \overline{c} \overline{d}] - [\overline{b} \overline{c} \overline{a}] - [\overline{b} \overline{a} \overline{d}] - 0 - [\overline{a} \overline{c} \overline{d}] + 0 + 0 = 0 \qquad [1 M]$ $[\overline{b} \overline{c} \overline{d}] + [\overline{a} \overline{b} \overline{d}] + [\overline{c} \overline{a} \overline{d}] = [\overline{b} \overline{c} \overline{a}] \qquad [1 M]$ $[\overline{b} \overline{c} \overline{d}] + [\overline{a} \overline{b} \overline{d}] + [\overline{c} \overline{a} \overline{d}] = [\overline{a} \overline{b} \overline{c}] \qquad [1 M]$ $[\overline{b} \overline{c} \overline{d}] + [\overline{a} \overline{b} \overline{d}] + [\overline{c} \overline{a} \overline{d}] = [\overline{a} \overline{b} \overline{c}] \qquad [1 M]$ $Let A, B and C be the vertices of a triangle.$ $Let AD, BE and CF be the abitive so the triangle ABC, therefore AD \perp BC, BF \perp AC, CF \perp AB. \qquad [1 M]$ $Let \overline{a}, \overline{b}, \overline{c}, \overline{d}, \overline{e}, \overline{f}$ be the position vectors of A, B, C, D, E, F respectively. Let P be the point of intersection of the altitudes AD BE with \overline{P} as the position vectors. \qquad [1 M] $Therefore \overline{AP} \perp \overline{BC}, \overline{BP} \perp \overline{AC} \qquad(1)$ To show that the altitudes AD, BE and CF are concurrent, It is sufficient to show that the altitude CF passes through the point P. We will have to prove that \overline{CF} and \overline{CP} are collinear vectors. This can be achieved by showing \overline{CP} and \overline{AP} . Now from (1) we have $\overline{AP} \perp \overline{BC} \text{ and } \overline{BP} \perp \overline{AC}$ $\overline{AP} \cdot \overline{BC} = 0 \text{ and } \overline{BP} \cdot \overline{AC} = 0$ $(\overline{p} - \overline{a}) \cdot (\overline{c} - \overline{b}) = 0$ $[1 M]$	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$	[1 M]
$ \therefore \left[\overline{AB} \ \overline{AC} \ \overline{AD}\right] = 0 $ $ \left[1 \ M\right] $ $ \left[\overline{b} - \overline{a} \overline{c} - \overline{a} \overline{d} - \overline{a}\right] = 0 $ $ \left[\overline{b} \overline{c} - \overline{a} \overline{d} - \overline{a}\right] - \left[\overline{a} \overline{c} - \overline{a} \overline{d} - \overline{a}\right] = 0 $ $ \left[\overline{b} \overline{c} - \overline{a} \overline{d} - \overline{a}\right] - \left[\overline{b} \overline{a} \overline{d} - \overline{a}\right] - \left[\overline{a} \overline{c} \overline{d} - \overline{a}\right] + \left[\overline{a} \overline{a} \overline{d} - \overline{a}\right] = 0 $ $ \left[\overline{b} \overline{c} \overline{d}\right] - \left[\overline{b} \overline{c} \overline{a}\right] - \left[\overline{b} \overline{a} \overline{d}\right] + \left[\overline{a} \overline{c} \overline{a}\right] + \left[\overline{a} \overline{a} \overline{d} - \overline{a}\right] = 0 $ $ \left[\overline{b} \overline{c} \overline{d}\right] - \left[\overline{b} \overline{c} \overline{a}\right] - \left[\overline{b} \overline{a} \overline{d}\right] + \left[\overline{a} \overline{c} \overline{a}\right] + \left[\overline{a} \overline{a} \overline{d} - \overline{a}\right] = 0 $ $ \left[\overline{b} \overline{c} \overline{d}\right] - \left[\overline{b} \overline{c} \overline{a}\right] - \left[\overline{b} \overline{a} \overline{d}\right] - 0 - \left[\overline{a} \overline{c} \overline{d}\right] + 0 + 0 = 0 $ $ \left[1 \ M\right] $ $ \left[\overline{b} \overline{c} \overline{d}\right] + \left[\overline{a} \overline{b} \overline{d}\right] + \left[\overline{c} \overline{a} \overline{d}\right] = \left[\overline{b} \overline{c} \overline{a}\right] $ $ \left[\overline{b} \overline{c} \overline{d}\right] + \left[\overline{a} \overline{b} \overline{d}\right] + \left[\overline{c} \overline{a} \overline{d}\right] = \left[\overline{a} \overline{b} \overline{c}\right] $ $ \left[1 \ M\right] $ $ \left[\overline{b} \overline{c} \overline{d}\right] + \left[\overline{a} \overline{b} \overline{d}\right] + \left[\overline{c} \overline{a} \overline{d}\right] = \left[\overline{a} \overline{b} \overline{c}\right] $ $ \left[1 \ M\right] $ $ \left[\overline{b} \overline{c} \overline{d}\right] + \left[\overline{a} \overline{b} \overline{d}\right] + \left[\overline{c} \overline{a} \overline{d}\right] = \left[\overline{a} \overline{b} \overline{c}\right] $ $ \left[1 \ M\right] $ $ \left[\overline{b} \overline{c} \overline{d}\right] + \left[\overline{a} \overline{b} \overline{d}\right] + \left[\overline{c} \overline{a} \overline{d}\right] = \left[\overline{a} \overline{b} \overline{c}\right] $ $ \left[1 \ M\right] $ $ \left[\overline{b} \overline{c} \overline{d}\right] + \left[\overline{a} \overline{b} \overline{d}\right] + \left[\overline{c} \overline{a} \overline{d}\right] = \left[\overline{a} \overline{b} \overline{c}\right] $ $ \left[1 \ M\right] $ $ \left[\overline{b} \overline{c} \overline{d}\right] + \left[\overline{b} \overline{c} \overline{B}\right] + \overline{AC} $ $ \dots (1) $ $ To show that the altitudes of the triangle ABC, therefore \overline{AP} \perp BC, BP \perp \overline{AC} AD, BE and CF are concurrent, It is sufficient to show that the altitude CF passes through the point P. We will have to prove that \overline{CF} \text{ and } \overline{CP} are collinear vectors. This can be achieved by showing \overline{CP} and \overline{AP}. Now from (1) we have \overline{AP} \perp \overline{BC} = 0 \text{ and } \overline{BP} \perp \overline{AC} = 0 \left(\overline{p} - \overline{a} \cdot (\overline{c} - \overline{b}) = 0 \left[1 \ M\right]$	24. Given $A(\overline{a})$, $B(\overline{b})$, $C(\overline{c})$ and $D(\overline{d})$ are coplanar.	
$\begin{bmatrix} \overline{b} - \overline{a} & \overline{c} - \overline{a} & \overline{d} - \overline{a} \end{bmatrix} = 0$ $\begin{bmatrix} \overline{b} & \overline{c} - \overline{a} & \overline{d} - \overline{a} \end{bmatrix} - \begin{bmatrix} \overline{a} & \overline{c} - \overline{a} & \overline{d} - \overline{a} \end{bmatrix} = 0$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} - \overline{a} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{a} & \overline{d} - \overline{a} \end{bmatrix} - \begin{bmatrix} \overline{a} & \overline{c} & \overline{d} - \overline{a} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{a} & \overline{d} - \overline{a} \end{bmatrix} = 0$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{a} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{c} & \overline{a} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{a} & \overline{d} - \overline{a} \end{bmatrix} = 0$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{a} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{c} & \overline{a} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{a} & \overline{d} - \overline{a} \end{bmatrix} = 0$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix} = \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix}$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{b} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{a} & \overline{d} \end{bmatrix} = \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix}$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{b} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{a} & \overline{d} \end{bmatrix} = \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix}$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{b} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{a} & \overline{d} \end{bmatrix} = \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix}$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{b} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{a} & \overline{d} \end{bmatrix} = \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix}$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{b} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{a} & \overline{d} \end{bmatrix} = \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix}$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} \overline{c} &$	$\Rightarrow \overline{AB} \overline{AC}$ and \overline{AD} are coplanar.	
$\begin{bmatrix} \overline{b} - \overline{a} & \overline{c} - \overline{a} & \overline{d} - \overline{a} \end{bmatrix} = 0$ $\begin{bmatrix} \overline{b} & \overline{c} - \overline{a} & \overline{d} - \overline{a} \end{bmatrix} - \begin{bmatrix} \overline{a} & \overline{c} - \overline{a} & \overline{d} - \overline{a} \end{bmatrix} = 0$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} - \overline{a} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{a} & \overline{d} - \overline{a} \end{bmatrix} - \begin{bmatrix} \overline{a} & \overline{c} & \overline{d} - \overline{a} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{a} & \overline{d} - \overline{a} \end{bmatrix} = 0$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{a} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{c} & \overline{a} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{a} & \overline{d} - \overline{a} \end{bmatrix} = 0$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{a} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{c} & \overline{a} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{a} & \overline{d} - \overline{a} \end{bmatrix} = 0$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix} = \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix}$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{b} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{a} & \overline{d} \end{bmatrix} = \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix}$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{b} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{a} & \overline{d} \end{bmatrix} = \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix}$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{b} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{a} & \overline{d} \end{bmatrix} = \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix}$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{b} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{a} & \overline{d} \end{bmatrix} = \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix}$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{b} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{a} & \overline{d} \end{bmatrix} = \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix}$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} \overline{c} &$	$\therefore \left\lceil \overline{AB} \ \overline{AC} \ \overline{AD} \right\rceil = 0$	[1 M]
$\begin{bmatrix} \overline{b} & \overline{c} - \overline{a} & \overline{d} - \overline{a} \end{bmatrix} - \begin{bmatrix} \overline{a} & \overline{c} - \overline{a} & \overline{d} - \overline{a} \end{bmatrix} = 0$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} - \overline{a} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{a} & \overline{d} - \overline{a} \end{bmatrix} - \begin{bmatrix} \overline{a} & \overline{c} & \overline{d} - \overline{a} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{a} & \overline{d} - \overline{a} \end{bmatrix} = 0 [1 M]$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{a} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{c} & \overline{a} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{a} & \overline{d} - \overline{a} \end{bmatrix} = 0$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{c} & \overline{a} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{a} & \overline{d} - \overline{a} \end{bmatrix} = 0$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{b} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{a} & \overline{d} \end{bmatrix} = \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix}$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{b} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{a} & \overline{d} \end{bmatrix} = \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix}$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{b} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{a} & \overline{d} \end{bmatrix} = \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} 1 M \end{bmatrix}$ $\begin{bmatrix} Et A, B and C b the vertices of a triangle.$ Let AD, BE and CF be the altitudes of the triangle ABC, therefore AD $\perp BC$, BF $\perp AC$, CF $\perp AB$. [1 M] Let $\overline{a}, \overline{b}, \overline{c}, \overline{d}, \overline{c}, \overline{f}$ be the position vectors of A, B, C, D, E, F respectively. Let P be the point of intersection of the altitudes AD BE with \overline{P} as the position vectors. [1 M] Therefore $\overline{AP} \perp \overline{BC}$, $\overline{BP} \perp \overline{AC}$ (1) To show that the altitudes AD, BE and CF are concurrent, It is sufficient to show that the altitude CF passes through the point P. We will have to prove that \overline{CF} and \overline{CP} are collinear vectors. This can be achieved by showing \overline{CP} and \overline{AP} . Now from (1) we have $\overline{AP} \perp \overline{BC}$ and $\overline{BP} \perp \overline{AC}$ $\overline{AP} \cdot \overline{BC} = 0$ and $\overline{BP} \cdot \overline{AC} = 0$ [1 M]		
$\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} - \overline{a} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{a} & \overline{d} - \overline{a} \end{bmatrix} - \begin{bmatrix} \overline{a} & \overline{c} & \overline{d} - \overline{a} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{a} & \overline{d} - \overline{a} \end{bmatrix} = 0 [1 \text{ M}]$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{a} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{b} & \overline{a} & \overline{a} \end{bmatrix}$ $-\begin{bmatrix} \overline{a} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{c} & \overline{a} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{a} & \overline{d} - \overline{a} \end{bmatrix} = 0$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{a} & \overline{d} \end{bmatrix} - 0 - \begin{bmatrix} \overline{a} & \overline{c} & \overline{d} \end{bmatrix} + 0 + 0 = 0 [1 \text{ M}]$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{b} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{a} & \overline{d} \end{bmatrix} = \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{b} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{a} & \overline{d} \end{bmatrix} = \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} 1 \text{ M} \end{bmatrix}$ $\begin{bmatrix} Let A, B and C be the vertices of a triangle.$ $Let A, B and C be the vertices of a triangle.$ $Let A, B and C be the vertices of a triangle.$ $Let A, B and C be the vertices of a triangle.$ $Let A, B and C be the vertices of a triangle.$ $Let A, B and C be the vertices of a triangle.$ $Let A, B and C be the vertices of a triangle.$ $Let A, B and C be the vertices of a triangle.$ $Let A, B and C be the vertices of a triangle.$ $Let A, B and C be the vertices of a triangle.$ $I M \end{bmatrix}$ $Let \overline{a}, \overline{b}, \overline{c}, \overline{d}, \overline{e}, \overline{f}$ be the position vectors of A, B, C, D, E, F respectively. Let P be the point of intersection of the altitudes AD BE with \overline{P} as the position vectors. $[1 M]$ $Therefore \overline{AP} \perp \overline{BC}, \overline{BP} \perp \overline{AC} \qquad(1)$ To show that the altitudes AD, BE and CF are concurrent, It is sufficient to show that the altitude CF passes through the point P. We will have to prove that \overline{CF} and \overline{CP} are collinear vectors. This can be achieved by showing \overline{CP} and \overline{AP} . Now from (1) we have $\overline{AP} \perp \overline{BC} = 0 \text{ and } \overline{BP} \perp \overline{AC} = 0$ $(\overline{p} - \overline{a}) \cdot (\overline{c} - \overline{b}) = 0$ $[1 M]$		
$\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{a} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{b} & \overline{a} & \overline{a} \end{bmatrix} \\ -\begin{bmatrix} \overline{a} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{c} & \overline{a} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{a} & \overline{d} - \overline{a} \end{bmatrix} = 0$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix} = 0 \\ \begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{b} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{a} & \overline{d} \end{bmatrix} = \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix} \\ \begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{b} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{a} & \overline{d} \end{bmatrix} = \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix} $ $\begin{bmatrix} 1 M \end{bmatrix} \\ \begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{c} & \overline{c} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{a} & \overline{d} \end{bmatrix} = \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix} $ $\begin{bmatrix} 1 M \end{bmatrix} \\ \begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} + \begin{bmatrix} 1 M \end{bmatrix} \\ \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} 1 M \end{bmatrix} \\ \end{bmatrix} $ $\begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} 1 M \end{bmatrix} \\ \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} $ $\begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} $ $\begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} $ $\begin{bmatrix} \overline{c} & \overline{c} & \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{c} & $		_] _ []]
$-\begin{bmatrix} \overline{a} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{c} & \overline{a} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{a} & \overline{d} - \overline{a} \end{bmatrix} = 0$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{a} & \overline{d} \end{bmatrix} - 0 - \begin{bmatrix} \overline{a} & \overline{c} & \overline{d} \end{bmatrix} + 0 + 0 = 0 \qquad [1 M]$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{b} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{a} & \overline{d} \end{bmatrix} = \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix}$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{b} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{a} & \overline{d} \end{bmatrix} = \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix} \qquad [1 M]$ $\begin{bmatrix} Let A, B and C be the vertices of a triangle. \\ \text{Let AD, BE and CF be the altitudes of the triangle ABC, \\ \text{therefore AD \perp BC, BF \perp AC, CF \perp AB. [1 M]Let \overline{a}, \overline{b}, \overline{c}, \overline{d}, \overline{e}, \overline{f} be the position vectors of A, B, C, D, E, Frespectively. Let P be the point of intersection of the altitudes AD BEwith \overline{P} as the position vectors. [1 M]Therefore \overline{AP} \perp \overline{BC}, \overline{BP} \perp \overline{AC}(1)To show that the altitudes AD, BE and CF are concurrent, It is sufficient to show that the altitude CF passesthrough the point P. We will have to prove that \overline{CF} and \overline{CP} are collinear vectors. This can be achieved byshowing \overline{CP} and \overline{AP}.Now from (1) we have\overline{AP} \perp \overline{BC} and \overline{BP} \perp \overline{AC} = 0(\overline{p} - \overline{a}) \cdot (\overline{c} - \overline{b}) = 0 [1 M]$		$-\overline{a} = 0 [IM]$
$\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{a} & \overline{d} \end{bmatrix} - 0 - \begin{bmatrix} \overline{a} & \overline{c} & \overline{d} \end{bmatrix} + 0 + 0 = 0 $ [1 M] $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{b} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{a} & \overline{d} \end{bmatrix} = \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix}$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{b} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{a} & \overline{d} \end{bmatrix} = \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix}$ [1 M] $\begin{bmatrix} \text{Let A, B and C be the vertices of a triangle.}$ Let AD, BE and CF be the altitudes of the triangle ABC, therefore AD \perp BC, BF \perp AC, CF \perp AB. (1 M] Let $\overline{a}, \overline{b}, \overline{c}, \overline{d}, \overline{e}, \overline{f}$ be the position vectors of A, B, C, D, E, F respectively. Let P be the point of intersection of the altitudes AD BE with \overline{P} as the position vectors. [1 M] Therefore $\overline{AP} \perp \overline{BC}, \overline{BP} \perp \overline{AC}$ (1) To show that the altitudes AD, BE and CF are concurrent, It is sufficient to show that the altitude CF passes through the point P. We will have to prove that \overline{CF} and \overline{CP} are collinear vectors. This can be achieved by showing \overline{CP} and \overline{AP} . Now from (1) we have $\overline{AP} \perp \overline{BC}$ and $\overline{BP} \perp \overline{AC}$ $\overline{AP} \cdot \overline{BC} = 0$ and $\overline{BP} \cdot \overline{AC} = 0$ $(\overline{p} - \overline{a}) \cdot (\overline{c} - \overline{b}) = 0$ [1 M]		
$\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{b} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{a} & \overline{d} \end{bmatrix} = \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix}$ $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{b} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{a} & \overline{d} \end{bmatrix} = \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} 1 M \end{bmatrix}$ $\begin{bmatrix} \text{Let } A, B \text{ and } C \text{ be the vertices of a triangle.}$ $\begin{bmatrix} \text{Let } AD, BE \text{ and } CF \text{ be the altitudes of the triangle ABC, therefore AD \perp BC, BF \perp AC, CF \perp AB. [1 M] \begin{bmatrix} \text{Let } \overline{a}, \overline{b}, \overline{c}, \overline{d}, \overline{e}, \overline{f} \text{ be the position vectors of A, B, C, D, E, F \\ \text{respectively. Let P be the point of intersection of the altitudes AD BE \\ \text{with } \overline{P} \text{ as the position vectors.} [1 M] Therefore \overline{AP} \perp \overline{BC}, \overline{BP} \perp \overline{AC} \qquad(1) To show that the altitudes AD, BE and CF are concurrent, It is sufficient to show that the altitude CF passes through the point P. We will have to prove that \overline{CF} and \overline{CP} are collinear vectors. This can be achieved by showing \overline{CP} and \overline{AP}. Now from (1) we have \overline{AP} \perp \overline{BC} \text{ and } \overline{BP} \perp \overline{AC} = 0 (\overline{p} - \overline{a}) \cdot (\overline{c} - \overline{b}) = 0 \begin{bmatrix} 1 M \end{bmatrix}$	$-\begin{bmatrix} \overline{a} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{c} & \overline{a} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{a} \end{bmatrix}$	$\overline{\mathbf{d}} - \overline{\mathbf{a}} \right] = 0$
$\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{b} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{a} & \overline{d} \end{bmatrix} = \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix}$ $\begin{bmatrix} 1 \text{ M} \end{bmatrix}$ $\begin{bmatrix} \text{Let A, B and C be the vertices of a triangle.} \\ \text{Let AD, BE and CF be the altitudes of the triangle ABC, therefore AD \perp BC, BF \perp AC, CF \perp AB. \begin{bmatrix} 1 \text{ M} \end{bmatrix} \begin{bmatrix} \text{Let } \overline{a}, \overline{b}, \overline{c}, \overline{d}, \overline{e}, \overline{f} \text{ be the position vectors of A, B, C, D, E, F } \\ \text{respectively. Let P be the point of intersection of the altitudes AD BE with \overline{P} as the position vectors. \begin{bmatrix} 1 \text{ M} \end{bmatrix} \begin{bmatrix} \text{Therefore } \overline{AP} \perp \overline{BC}, \overline{BP} \perp \overline{AC} \\ \text{Therefore } \overline{AP} \perp \overline{BC}, \overline{BP} \perp \overline{AC} \\ \text{Though the point P. We will have to prove that } \overline{CF} \text{ and } \overline{CP} \text{ are collinear vectors. This can be achieved by showing } \overline{CP} \text{ and } \overline{AP}. Now from (1) we have \overline{AP} \perp \overline{BC} = 0 \text{ and } \overline{BP} \perp \overline{AC} = 0 (\overline{p} - \overline{a}) \cdot (\overline{c} - \overline{b}) = 0 \begin{bmatrix} 1 \text{ M} \end{bmatrix}$	$\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{a} & \overline{d} \end{bmatrix} - 0 - \begin{bmatrix} \overline{a} & \overline{c} & \overline{d} \end{bmatrix} + 0 + 0$	0 = 0 [1 M]
ORLet A, B and C be the vertices of a triangle.Let AD, BE and CF be the altitudes of the triangle ABC, therefore AD \perp BC, BF \perp AC, CF \perp AB.[1 M]Let $\overline{a}, \overline{b}, \overline{c}, \overline{d}, \overline{e}, \overline{f}$ be the position vectors of A, B, C, D, E, F respectively. Let P be the point of intersection of the altitudes AD BE with \overline{P} as the position vectors.[1 M]Therefore $\overline{AP} \perp \overline{BC}, \overline{BP} \perp \overline{AC}$ (1)To show that the altitudes AD, BE and CF are concurrent, It is sufficient to show that the altitude CF passes through the point P. We will have to prove that \overline{CF} and \overline{CP} are collinear vectors. This can be achieved by showing \overline{CP} and \overline{AP} .Now from (1) we have $\overline{AP} \perp \overline{BC}$ and $\overline{BP} \perp \overline{AC}$ $\overline{AP} \cdot \overline{BC} = 0$ and $\overline{BP} \cdot \overline{AC} = 0$ $(\overline{p} - \overline{a}) \cdot (\overline{c} - \overline{b}) = 0$	$\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{b} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{a} & \overline{d} \end{bmatrix} = \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix}$	
Let A, B and C be the vertices of a triangle. Let AD, BE and CF be the altitudes of the triangle ABC, therefore AD \perp BC, BF \perp AC, CF \perp AB. [1 M] Let \overline{a} , \overline{b} , \overline{c} , \overline{d} , \overline{e} , \overline{f} be the position vectors of A, B, C, D, E, F respectively. Let P be the point of intersection of the altitudes AD BE with \overline{P} as the position vectors. [1 M] Therefore $\overline{AP} \perp \overline{BC}$, $\overline{BP} \perp \overline{AC}$ (1) To show that the altitudes AD, BE and CF are concurrent, It is sufficient to show that the altitude CF passes through the point P. We will have to prove that \overline{CF} and \overline{CP} are collinear vectors. This can be achieved by showing \overline{CP} and \overline{AP} . Now from (1) we have $\overline{AP} \perp \overline{BC}$ and $\overline{BP} \perp \overline{AC}$ $\overline{AP} \cdot \overline{BC} = 0$ and $\overline{BP} \cdot \overline{AC} = 0$ $(\overline{p} - \overline{a}) \cdot (\overline{c} - \overline{b}) = 0$ [1 M]	$\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{b} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{a} & \overline{d} \end{bmatrix} = \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix}$	[1 M]
Let AD, BE and CF be the altitudes of the triangle ABC, therefore AD \perp BC, BF \perp AC, CF \perp AB. [1 M] Let \overline{a} , \overline{b} , \overline{c} , \overline{d} , \overline{e} , \overline{f} be the position vectors of A, B, C, D, E, F respectively. Let P be the point of intersection of the altitudes AD BE with \overline{P} as the position vectors. [1 M] Therefore $\overline{AP} \perp \overline{BC}$, $\overline{BP} \perp \overline{AC}$ (1) To show that the altitudes AD, BE and CF are concurrent, It is sufficient to show that the altitude CF passes through the point P. We will have to prove that \overline{CF} and \overline{CP} are collinear vectors. This can be achieved by showing \overline{CP} and \overline{AP} . Now from (1) we have $\overline{AP} \perp \overline{BC}$ and $\overline{BP} \perp \overline{AC}$ $\overline{AP} \cdot \overline{BC} = 0$ and $\overline{BP} \cdot \overline{AC} = 0$ $(\overline{p} - \overline{a}) \cdot (\overline{c} - \overline{b}) = 0$ [1 M]		C
therefore $AD \perp BC$, $BF \perp AC$, $CF \perp AB$. [1 M] Let \overline{a} , \overline{b} , \overline{c} , \overline{d} , \overline{e} , \overline{f} be the position vectors of A, B, C, D, E, F respectively. Let P be the point of intersection of the altitudes AD BE with \overline{P} as the position vectors. [1 M] Therefore $\overline{AP} \perp \overline{BC}$, $\overline{BP} \perp \overline{AC}$ (1) To show that the altitudes AD, BE and CF are concurrent, It is sufficient to show that the altitude CF passes through the point P. We will have to prove that \overline{CF} and \overline{CP} are collinear vectors. This can be achieved by showing \overline{CP} and \overline{AP} . Now from (1) we have $\overline{AP} \perp \overline{BC}$ and $\overline{BP} \perp \overline{AC}$ $\overline{AP} \cdot \overline{BC} = 0$ and $\overline{BP} \cdot \overline{AC} = 0$ $(\overline{p} - \overline{a}) \cdot (\overline{c} - \overline{b}) = 0$ [1 M]		
Let \overline{a} , \overline{b} , \overline{c} , \overline{d} , \overline{e} , \overline{f} be the position vectors of A, B, C, D, E, F respectively. Let P be the point of intersection of the altitudes AD BE with \overline{P} as the position vectors. [1 M] Therefore $\overline{AP} \perp \overline{BC}$, $\overline{BP} \perp \overline{AC}$ (1) To show that the altitudes AD, BE and CF are concurrent, It is sufficient to show that the altitude CF passes through the point P. We will have to prove that \overline{CF} and \overline{CP} are collinear vectors. This can be achieved by showing \overline{CP} and \overline{AP} . Now from (1) we have $\overline{AP} \perp \overline{BC}$ and $\overline{BP} \perp \overline{AC}$ $\overline{AP} \cdot \overline{BC} = 0$ and $\overline{BP} \perp \overline{AC} = 0$ $(\overline{p} - \overline{a}) \cdot (\overline{c} - \overline{b}) = 0$ [1 M]	therefore $AD \mid BC \mid BE \mid AC \mid CE \mid AB$ [1 M]	
with \overline{P} as the position vectors. [1 M] Therefore $\overline{AP} \perp \overline{BC}$, $\overline{BP} \perp \overline{AC}$ (1) To show that the altitudes AD, BE and CF are concurrent, It is sufficient to show that the altitude CF passes through the point P. We will have to prove that \overline{CF} and \overline{CP} are collinear vectors. This can be achieved by showing \overline{CP} and \overline{AP} . Now from (1) we have $\overline{AP} \perp \overline{BC}$ and $\overline{BP} \perp \overline{AC}$ $\overline{AP} \cdot \overline{BC} = 0$ and $\overline{BP} \cdot \overline{AC} = 0$ $(\overline{p} - \overline{a}) \cdot (\overline{c} - \overline{b}) = 0$ [1 M]	-/~	
Therefore $\overline{AP} \perp \overline{BC}$, $\overline{BP} \perp \overline{AC}$ (1) To show that the altitudes AD, BE and CF are concurrent, It is sufficient to show that the altitude CF passes through the point P. We will have to prove that \overline{CF} and \overline{CP} are collinear vectors. This can be achieved by showing \overline{CP} and \overline{AP} . Now from (1) we have $\overline{AP} \perp \overline{BC}$ and $\overline{BP} \perp \overline{AC}$ $\overline{AP} \cdot \overline{BC} = 0$ and $\overline{BP} \cdot \overline{AC} = 0$ $(\overline{p} - \overline{a}) \cdot (\overline{c} - \overline{b}) = 0$ [1 M]	respectively. Let P be the point of intersection of the altitudes AD BE	
Therefore $\overline{AP} \perp \overline{BC}$, $\overline{BP} \perp \overline{AC}$ (1) To show that the altitudes AD, BE and CF are concurrent, It is sufficient to show that the altitude CF passes through the point P. We will have to prove that \overline{CF} and \overline{CP} are collinear vectors. This can be achieved by showing \overline{CP} and \overline{AP} . Now from (1) we have $\overline{AP} \perp \overline{BC}$ and $\overline{BP} \perp \overline{AC}$ $\overline{AP} \cdot \overline{BC} = 0$ and $\overline{BP} \cdot \overline{AC} = 0$ $(\overline{p} - \overline{a}) \cdot (\overline{c} - \overline{b}) = 0$ [1 M]	with \overline{P} as the position vectors. [1 M]	F B
through the point P. We will have to prove that \overline{CF} and \overline{CP} are collinear vectors. This can be achieved by showing \overline{CP} and \overline{AP} . Now from (1) we have $\overline{AP} \perp \overline{BC}$ and $\overline{BP} \perp \overline{AC}$ $\overline{AP} \cdot \overline{BC} = 0$ and $\overline{BP} \cdot \overline{AC} = 0$ $(\overline{p} - \overline{a}) \cdot (\overline{c} - \overline{b}) = 0$ [1 M]		_ D
showing \overline{CP} and \overline{AP} . Now from (1) we have $\overline{AP} \perp \overline{BC}$ and $\overline{BP} \perp \overline{AC}$ $\overline{AP} \cdot \overline{BC} = 0$ and $\overline{BP} \cdot \overline{AC} = 0$ $(\overline{p} - \overline{a}) \cdot (\overline{c} - \overline{b}) = 0$ [1 M]		-
Now from (1) we have $\overline{AP} \perp \overline{BC} \text{ and } \overline{BP} \perp \overline{AC}$ $\overline{AP} \cdot \overline{BC} = 0 \text{ and } \overline{BP} \cdot \overline{AC} = 0$ $(\overline{p} - \overline{a}) \cdot (\overline{c} - \overline{b}) = 0$ [1 M]	through the point P. We will have to prove that \overline{CF} and \overline{CP} are collinear vectors. This can	an be achieved by
$\overline{AP} \perp \overline{BC} \text{ and } \overline{BP} \perp \overline{AC}$ $\overline{AP} \cdot \overline{BC} = 0 \text{ and } \overline{BP} \cdot \overline{AC} = 0$ $(\overline{p} - \overline{a}) \cdot (\overline{c} - \overline{b}) = 0$ [1 M]		
$\overline{AP} \cdot \overline{BC} = 0 \text{ and } \overline{BP} \cdot \overline{AC} = 0$ $(\overline{p} - \overline{a}) \cdot (\overline{c} - \overline{b}) = 0$ [1 M]		
$(\overline{p} - \overline{a}) \cdot (\overline{c} - \overline{b}) = 0$ [1 M]		
Guru Aanklan 14 Website : www.guruaanklan.com	$(\mathbf{p}-\overline{\mathbf{a}})\cdot(\overline{\mathbf{c}}-\overline{\mathbf{b}})=0$	[1 M]
	Guru Aanklan 14 Website : www.guru	aanklan.com

GuruAanklan / HSC Examination / Grand Test / Maths Code / Set-A / Solutions $(\overline{p} - \overline{b}) \cdot (\overline{c} - \overline{a}) = 0$ $\overline{p} \cdot \overline{c} - \overline{p} \cdot \overline{b} - \overline{a} \cdot \overline{c} + \overline{a} \cdot \overline{b} = 0 \qquad ...(2)$ $\overline{p} \cdot \overline{c} - \overline{p} \cdot \overline{a} - \overline{b} \cdot \overline{c} + \overline{b} \cdot \overline{a} = 0 \qquad ...(3)$ Therefore, subtracting equation (2) from equation (3), we get, $-\overline{p} \cdot \overline{a} + \overline{p} \cdot \overline{b} - \overline{b} \cdot \overline{c} + \overline{a} \cdot \overline{c} = 0$ $\overline{p}(\overline{b} - \overline{a}) - \overline{c}(\overline{b} - \overline{a}) = 0$ $(\overline{p} - \overline{c}) \cdot (\overline{b} - \overline{a}) = 0$ $\overline{CP} \cdot \overline{AB} = 0$ $\overline{CP} \perp \overline{AB}$ Hence the proof. Step 1 :

25. Ste

10

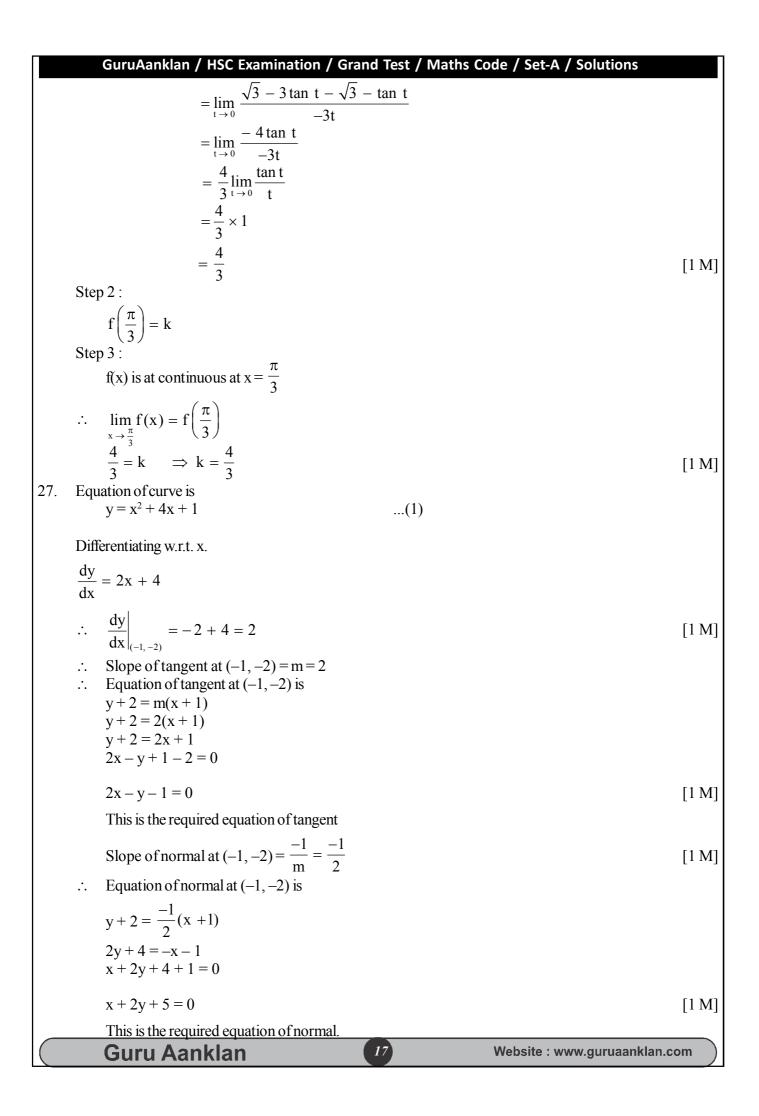
Inequation	Equation	Points	Region
$3x + 5y \le 26$	$3x + 5y = 26$ L_1	$ \begin{array}{ c c c c c c c c } \hline x & 0 & 8.6 \\ \hline y & 5.2 & 0 \\ \hline (x, y) & (0, 5.2) & (8.6, 0) \\ \hline A & B \\ \hline \end{array} $	Towards origin.
$5x + 3y \le 30$	$5x + 3y = 30$ L_2	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Towards origin
$x \ge 0$	$\mathbf{x} = 0$	y-axis	+ve x-axis
$y \ge 0$	y = 0	x-axis	+ve y-axis



[1 M]

[1 M]

GuruAanklan / HSC Examination / Grand Test / Maths Code / Set-A / Solutions $E\left(\frac{9}{2}, \frac{9}{2}\right) \qquad z = \frac{63}{2} + \frac{99}{2} = \frac{162}{2} = 81$ D(6,0) z = 42 + 0 = 42 $Z_{Max} = 81 \text{ at} \left(\frac{9}{2}, \frac{9}{2}\right)$ \therefore $x = \frac{9}{2}, y = \frac{9}{2}$ are optimal solution. [1 M] 26. $f(x) = \frac{\sqrt{3} - \tan x}{\pi - 3x} \qquad x \neq \frac{\pi}{3}$ $= k \qquad x = \frac{\pi}{3}$ Step 1: $\lim_{x \to \frac{\pi}{2}} f(x) = \lim_{x \to \frac{\pi}{2}} \frac{\sqrt{3} - \tan x}{\pi - 3x}$...(1) put $x - \frac{\pi}{3} = t$ $x = \frac{\pi}{3} + t$ [1M] as $x \to \frac{\pi}{3}$ $t \to 0$ $-3x + \pi = -3t$ $\pi - 3x = -3t$ \therefore From(1) $\lim_{x \to \frac{\pi}{3}} f(x) = \lim_{t \to 0} \frac{\sqrt{3} - \tan\left(\frac{\pi}{3} + t\right)}{-3t}$ $=\lim_{t\to 0}\frac{\sqrt{3}-\left(\frac{\tan\frac{\pi}{3}+\tan t}{1-\tan\frac{\pi}{3}\tan t}\right)}{-3t}$ $=\lim_{t\to 0}\frac{\sqrt{3}-\frac{\sqrt{3}+\tan t}{1-\sqrt{3}\tan t}}{\frac{2t}{2}}$ [1M] Guru Aanklan 16 Website : www.guruaanklan.com



GuruAanklan / HSC Examination / Grand Test / Maths Code / Set-A / Set-	olutions
28. $\int \frac{3x+1}{(x-2)^2(x+2)} dx$	
$\frac{3x+1}{(x-2)^2(x+2)} = \frac{A}{(x-2)^2} + \frac{B}{(x-2)} + \frac{C}{(x+2)} \qquad \dots (1)$	
$= \frac{A(x+2) + B(x-2)(x+2) + C(x-2)^2}{(x-2)^2(x+2)}$	[1 M]
Comparing we get $3x + 1 = A(x + 2) + B(x - 2) (x + 2) + C(x - 2)^2$ Let $x = 2$	
$6+1 = 4A \implies 7=4A \implies A=\frac{7}{4}$	
Let $x = -2$	
$-6+1 = C(-4)^2 \implies -5 = 16C \implies C = \frac{-5}{16}$	
Let $x = 0$ 1 = 2A - 4B + 4C 4B = 2A + 4C - 1	
$= 2 \times \frac{7}{4} + 4\left(\frac{-5}{16}\right) - 1$	
$= \frac{7}{2} - \frac{5}{4} - 1$	[2 M]
$\mathbf{B} = \frac{7}{8} - \frac{5}{16} - \frac{1}{4}$	
$=\frac{14-5-4}{16}$	
$=\frac{14-9}{16}$	
$=\frac{5}{16}$	
$ \begin{array}{c} 16 \\ \therefore \text{From}(1) \end{array} $	
$\frac{7}{4}$ $\frac{5}{16}$ $\frac{-5}{16}$	
$\frac{3x+1}{(x-2)^2(x+2)} = \frac{\frac{7}{4}}{(x-2)^2} + \frac{\frac{5}{16}}{(x-2)} + \frac{\frac{-5}{16}}{(x+2)}$	
Integrating on both side	
$\int \frac{3x+1}{(x-2)^2(x+2)} dx = \frac{7}{4} \int \frac{1}{(x-2)^2} dx + \frac{5}{16} \int \frac{1}{(x-2)} dx - \frac{5}{16} \int \frac{1}{(x+2)} dx$	
$= \frac{7}{4} \left(\frac{-1}{x-2} \right) + \frac{5}{16} \log x-2 - \frac{5}{16} \log x+2 + c$	[1 M]
$= \frac{-7}{4(x-2)} + \frac{5}{16}\log x-2 - \frac{5}{16}\log x+2 + c$	
Guru Aanklan 18 Website : www.	guruaanklan.com

GuruAanklan / HSC Examination / Grand Test / Maths Code / Set-A / Solutions By the symmetry of the ellipse, required area of the ellipse is 4 times the area of the region OPQO. For the 29. region, the limits of integration are x = 0 and x = a. From the equation y ↓ Q $\frac{x^2}{4} + \frac{y^2}{25} = 1$ $\frac{y^2}{25} = 1 - \frac{x^2}{4}$ 0 P_{c} $y^2 = 25 \left[\frac{4 - x^2}{4} \right]$ $y^2 = \frac{25}{4}(4 - x^2)$ $y = \pm \frac{5}{2}\sqrt{4 - x^2}$ [1 M] In first quadrant, y > 0 $\therefore \quad y = \frac{5}{2}\sqrt{4 - x^2}$ \therefore A = 4 $\int_{1}^{2} y \, dx$ [1 M] $=4\int_{0}^{2}\frac{5}{2}\sqrt{4-x^{2}}\,dx$ $= 2 \times 5 \int_{-\infty}^{2} \sqrt{4 - x^2} \, \mathrm{d}x$ $=10\left[\frac{x}{2}\sqrt{4-x^{2}}+\frac{4}{2}\sin^{-1}\left(\frac{x}{2}\right)\right]_{0}^{2}$ [1 M] $= 20 \times \frac{\pi}{2}$ = 10π sq. units [1 M] 30. Let θ be the temperature of body at a time t. Room temperature is given to be 25°C. By Newton's laws of cooling, we have $\frac{\mathrm{d}\theta}{\mathrm{d}t} \propto (\theta - 25)$ [1 M] $\frac{\mathrm{d}\theta}{\mathrm{d}t} = -\,\mathrm{k}(\theta - 25)\,\,\mathrm{k} > 0$ $\frac{d\theta}{\theta - 25} = -kdt \quad k > 0$ Integrating on both side $\int \frac{\mathrm{d}\theta}{\theta - 25} = -\mathrm{k} \int \mathrm{d}t$

19

Guru Aanklan

Website : www.guruaanklan.com

	GuruAanklan / HSC Examination	/ Grand Test / M	Maths Code / Set-A / Solutions
	$\log \theta - 25 = -kt + c$	(1)	[1 M]
	Initially $t = 0, \theta = 80^{\circ} C$		
	$\log 80 - 25 = -0 + c$ $c = \log 55^{\circ}$		
	From (1)		
	$\log \theta - 25 = -kt + \log 55^{\circ}$		
	$\log \mid \theta - 25 \mid -\log 55^{\circ} = -kt$		
	$\log\left \frac{\theta-25}{55}\right = -kt$	(2)	[1 M]
Put	$t = 30 \text{ mm}, \theta = 50^{\circ}\text{C}$		
	$\log\left \frac{50-25}{55}\right = -k \times 30$		
	$-k = \frac{1}{30} \log \left \frac{25}{55} \right = \frac{1}{30} \log \left \frac{5}{11} \right $		
	From (2)		
	$\log\left \frac{\theta-25}{55}\right = \frac{t}{30}\log\left \frac{5}{11}\right $	(3)	
Put	t = 1 hrs = 60 min		
	$\log\left \frac{\theta - 25}{55}\right = \frac{60}{30}\log\left \frac{5}{11}\right $		
	$\log\left \frac{\theta - 25}{55}\right = 2\log\left \frac{5}{11}\right $		
	$\log\left \frac{\theta-25}{55}\right = \log\left \frac{5^2}{11^2}\right $		
	$\frac{\theta - 25}{55} = \frac{5 \times 5}{11 \times 11}$		
	$\theta - 25 = \frac{5 \times 5 \times 55}{11 \times 11}$		
	$\theta - 25 = \frac{125}{11}$		
	$\theta = \frac{125}{11} + 25$		
	$\Theta = \frac{125 + 275}{11}$		
	$\Theta = \frac{400}{11}$		
	$\theta = 36.36^{\circ}\mathrm{C}$		[1 M]
		20	
	Guru Aanklan	20	Website : www.guruaanklan.com

GuruAanklan / HSC Examination / Grand Test / Maths Code / Set-A / Solutions

OR

$$(1 + e^{x/y})dx + e^{x/y}\left(1 - \frac{x}{y}\right)dy = 0$$

$$Let \frac{x}{y} = v$$

$$(1 M)$$

$$x = vy$$

$$dx = vdy + ydv$$

$$(1 M)$$

$$\therefore (1 + e^{v})(v dy + y dv) + e^{v}(1 - v) dy = 0$$

$$(1 + e^{v}) v dy + y(1 + e^{v}) dv + e^{v}(1 - v) dy = 0$$

$$(v + ve^{v} + e^{v} - ve^{v}) dy + y(1 + e^{v}) dv = 0$$

$$(v + e^{v}) dy = -y(1 + e^{v}) dv$$
Integrating on both side

$$\int \frac{dy}{y} = -\int \frac{1 + e^{v}}{v + e^{v}} dv$$

$$[1 M]$$

$$\log |y| = -\log |v + e^{v}| + \log |c|$$

$$\log |y| + \log |v + e^{v}| = \log |c|$$

$$\log |y| + \log |v + e^{v}| = \log |c|$$

$$y(v + e^{v}) = c$$

$$y\left[\frac{x}{y} + e^{x/y}\right] = c$$

$$x + ye^{x/y} = c$$

$$[1 M]$$

Guru Aanklan

Website : www.guruaanklan.com