Guru Aanlzlan

GuruAanklan Foundation/MHT-CET/Examination Physics + Chemistry
 Set - [A]

ANSWER KEY

1.	(C)	2.	(A)	3.	(B)	4.	(D)	5.	(D)	6.	(D)
7.	(B)	8.	(A)	9.	(A)	10.	(B)	11.	(C)	12.	(B)
13.	(A)	14.	(A)	15.	(C)	16.	(B)	17.	(D)	18.	(C)
19.	(C)	20.	(C)	21.	(A)	22.	(C)	23.	(A)	24.	(C)
25.	(C)	26.	(A)	27.	(C)	28.	(A)	29.	(B)	30.	(B)
31.	(B)	32.	(A)	33.	(D)	34.	(C)	35.	(A)	36.	(B)
37.	(B)	38.	(A)	39.	(C)	40.	(C)	41.	(D)	42.	(C)
43.	(C)	44.	(D)	45.	(D)	46.	(D)	47.	(A)	48.	(B)
49.	(C)	50.	(D)	51.	(A)	52.	(D)	53.	(A)	54.	(A)
55.	(D)	56.	(C)	57.	(A)	58	(A)	59	(D)	60.	(A)
61.	(C)	62.	(C)	63.	(D)	64.	(B)	65.	(C)	66.	(D)
67.	(D)	68.	(C)	69.	(C)	70.	(D)	71.	(B)	72.	(A)
73.	(A)	74.	(C)	75	(D)	76.	(C)	77.	(B)	78.	(C)
79.	(C)	80.	(C)	81.	(B)	82.	(B)	83.	(D)	84.	(B)
85.	(B)	86.	(D)	87.	(D)	88.	(C)	89.	(C)	90.	(C)
91.	(D)	92.	(C)	93.	(B)	94.	(D)	95.	(B)	96.	(C)
97.	(C)	98.	(A)	99.	(A)	100.	(A)				

PHYSICS

1. (C)

$$
3 \times 16=6 \times V
$$

$V=8$
$K . E=\frac{1}{2} \mathrm{mV}^{2}=\frac{1}{2} \times 6 \times 64=192$
2. (A)

$$
\begin{aligned}
& \mathrm{n}_{1}=60 \mathrm{r} . \mathrm{p} . \mathrm{h}=1 \mathrm{r} . \mathrm{p} . \mathrm{m}=\frac{1}{60} \mathrm{r} . \mathrm{p} . \mathrm{s} \\
& \mathrm{n}_{2}=50 \mathrm{r} . \mathrm{p} . \mathrm{h}=\frac{50}{60} \mathrm{r} . \mathrm{p} . \mathrm{m}=\frac{5}{360} \mathrm{r} . \mathrm{p} . \mathrm{s} \\
& \mathrm{t}=7 \mathrm{mins}
\end{aligned}
$$

$$
\alpha=\frac{\omega_{2}-\omega_{1}}{\mathrm{t}}
$$

$$
=\frac{2 \pi\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right)}{\mathrm{t}}
$$

$$
=\frac{2 \times 3.14\left(1-\frac{5}{6}\right)}{7 \times 60 \times 60}
$$

$$
=\frac{6.28 \times 1}{7 \times 60 \times 60 \times 6}
$$

$$
=4.15 \times 10^{-5} \mathrm{rad} / \mathrm{s}^{2}
$$

3. (B)
4. (D)

Since area velocity is constant; area acceleration is zero.

$$
\begin{aligned}
& \text { B.E }=-(\mathrm{T} . \mathrm{E}) \\
& T . E=\frac{1}{2}(P . E) \\
& \therefore \text { P.E }=-2 \text { (B.E) } \\
& =-2\left(4 \times 10^{8} \mathrm{~J}\right) \\
& =-8 \times 10^{8} \mathrm{~J}
\end{aligned}
$$

5. (D)
$\mathrm{L}=2 \pi \mathrm{R} \quad \therefore \mathrm{R}=\frac{\mathrm{L}}{2 \pi}$
Let $\mathrm{Z}, \mathrm{P}, \mathrm{X}$ and Y be four axes of rotation as shown.
$I_{p}+I_{y}=I_{z} \ldots \ldots .$. perpendicular axes theorem.
Also $I_{p}=I_{y} \ldots .$. both axes are along diameter.
$\therefore 2 \mathrm{I}_{\mathrm{y}}=\mathrm{I}_{\mathrm{z}}$

$\mathrm{I}_{\mathrm{y}}=\frac{\mathrm{I}_{\mathrm{z}}}{2}=\frac{\mathrm{MR}^{2}}{2}=\frac{\mathrm{M}}{2}\left(\frac{\mathrm{~L}^{2}}{4 \pi^{2}}\right)$
$\mathrm{I}_{\mathrm{x}}=\mathrm{I}_{\mathrm{y}}+\mathrm{Mh}^{2}$
$\mathrm{h}=\mathrm{R}=\frac{\mathrm{L}}{2 \pi}$
$\mathrm{I}_{\mathrm{x}}=\frac{\mathrm{ML}^{2}}{8 \pi^{2}}+\frac{\mathrm{ML}^{2}}{4 \pi^{2}}$
$=\frac{\mathrm{ML}^{2}}{\pi^{2}}\left[\frac{12}{32}\right]$
$\rho=\frac{\mathrm{M}}{\mathrm{L}}$
$\mathrm{M}=\rho \mathrm{L}$
$\mathrm{I}_{\mathrm{x}}=\frac{\rho \mathrm{L} \times \mathrm{L}^{2}}{\pi^{2}} \times \frac{3}{8}$
$\mathrm{I}_{\mathrm{x}}=\frac{3 \rho \mathrm{~L}^{3}}{8 \pi^{2}}$
6. (D)

Watt is the unit of power $=\frac{\text { Energy }}{\text { time }}$
7. (B)

Given that, $\sqrt{\frac{\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}+\mathrm{r}_{3}^{2}+\mathrm{r}_{4}^{2}+\mathrm{r}_{5}^{2}}{5}}=8 \mathrm{~cm}$
$\therefore \mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}+\mathrm{r}_{3}^{2}+\mathrm{r}_{4}^{2}+\mathrm{r}_{5}^{2}=64 \times 5 \mathrm{~cm}^{2}$
$\mathrm{I}=\mathrm{mr}_{1}^{2}+\mathrm{mr}_{2}^{2}+\mathrm{mr}_{3}^{2}+\mathrm{mr}_{4}^{2}+\mathrm{mr}_{5}^{2}$
$=\mathrm{m}\left(\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}+\mathrm{r}_{3}^{2}+\mathrm{r}_{4}^{2}+\mathrm{r}_{5}^{2}\right)$
$=\lg \times 64 \times 5 \mathrm{~cm}^{2}$
$\mathrm{I}=320 \mathrm{gcm}^{2}$
8. (A)

Total K.E $=$ K. $\mathrm{E}_{\text {trans }}+\mathrm{K}_{\text {. }}^{\text {Rot }}$
$=\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2} \mathrm{I} \omega^{2}$
$=\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2}\left(\frac{2}{5} \mathrm{MR}^{2}\right) \omega^{2}$
$=\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{5} \mathrm{M}\left(\mathrm{R}^{2} \omega^{2}\right)$
$=\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{5} \mathrm{mv}^{2}$
$=\frac{7}{10} \mathrm{mv}^{2}$
$=\frac{7}{10} \times 1 \times(1)^{2}$
$=0.7 \mathrm{~J}$
9. (A)
$\mathrm{F}=-\mathrm{kx}$
| $\mathrm{F} \mid=\mathrm{kx}$
F will be maximum, if x is maximum,
F $=\mathrm{kA}$
$\mathrm{k}=\mathrm{m} \omega^{2}$
$\mathrm{F}=\mathrm{m} \omega^{2} \mathrm{~A}$
$=10 \times 10^{-3} \times\left(\frac{2 \pi}{\mathrm{~T}}\right)^{2} \times 0.5$
$=10 \times 10^{-3} \times \frac{4 \pi^{2}}{\pi^{2}} \times 25 \times 0.5$
$\mathrm{F}=0.5 \mathrm{~N}$
10. (B)

Force acting on a particle performing SHM is given as, $\mathrm{F}=-\mathrm{kx}$
\therefore The force is correctly represented by graph in option B.
11. (C)
$\vec{a}+\vec{b}=11 \hat{i}-5 \hat{j}+4 \hat{k}$
$|\vec{a}+\vec{b}|=\sqrt{11^{2}+5^{2}+4^{2}}=9 \sqrt{2}$
12. (B)

Strain energy per unit Volume $=\frac{\text { Strain Energy }}{\text { Volume }}$

$$
\begin{aligned}
& \frac{1.8 \times 10^{-3}}{\mathrm{~V}}=6 \times 10^{-3} \\
& \frac{1.8 \times 10^{-3}}{6 \times 10^{-3}}=\mathrm{A} \times \ell=\pi \mathrm{r}^{2} \times \ell \\
& 3 \times 10^{-1}=\pi \times\left(\frac{1}{\pi^{2}}\right) \times \ell \\
& 3 \times 10^{-1}=\frac{\ell}{\pi} \\
& \ell=3 \times 10^{-1} \times \pi \\
& \ell=9.42 \times 10^{-1}=0.942 \mathrm{~m}
\end{aligned}
$$

13. (A)

Low adhesion is used for making raincoats waterproof.
14. (A)
S.E $=T(2 \mathrm{dA})=\mathrm{T} \times 2 \pi \mathrm{r}^{2}$
$=0.035 \times 3.14 \times\left(1 \times 10^{-2}\right)^{2} \times 2$
S.E $=2.19 \times 10^{-5} \mathrm{~J}$
15. (C)
$\mathrm{F}=\mathrm{T} \times \ell$
$\mathrm{F}=\mathrm{T} \times(2 \times 4 \mathrm{~L}) \ldots$
$\mathrm{F}=8 \mathrm{TL}$
16. (B)
$\mathrm{W}=\mathrm{FS} \cos \theta, \theta=90^{\circ}, \mathrm{W}=0$
17. (D)
$\frac{I_{\max }}{I_{\min }}=\frac{\left(\mathrm{a}_{2}+\mathrm{a}_{1}\right)^{2}}{\left(\mathrm{a}_{2}-\mathrm{a}_{1}\right)^{2}}=\frac{(4+3)^{2}}{(4-3)^{2}}=\frac{49}{1}$
18. (C)
$\mathrm{y}=2 \mathrm{~A} \sin \left(\frac{2 \pi \mathrm{x}}{\lambda}\right) \cos \left(\frac{2 \pi \mathrm{t}}{\mathrm{T}}\right)$
$\mathrm{y}=5 \sin \left(\frac{\pi \mathrm{x}}{3}\right) \cos (40 \pi \mathrm{t})$
$\frac{2 \pi \mathrm{x}}{\lambda}=\frac{\pi \mathrm{x}}{3}$
$\lambda=6$
distance between two node $=\frac{\lambda}{2}=3 \mathrm{~cm}$
19. (C)
$a=\sqrt{a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2} \cos \alpha}$
$\mathrm{a}^{2}=2 \mathrm{a}^{2}+2 \mathrm{a}^{2} \cos \alpha$
$\mathrm{a}^{2}=2 \mathrm{a}^{2}(1+\cos \alpha)$
$1+\cos \alpha=\frac{1}{2}$
$\cos \alpha=\frac{-1}{2}$

$$
\alpha=\frac{2 \pi}{3}
$$

20. (C)

For a closed pipe; fundamental frequency is given by, $\mathrm{n}=\frac{\mathrm{v}}{4 \mathrm{~L}}$, where L is the length of air column.
If ' ℓ ' is the length of pipe,
$\mathrm{n}_{1}=400 \mathrm{H}_{\mathrm{z}} \rightarrow \mathrm{L}_{1}=\ell-10$
$\mathrm{n}_{2}=300 \mathrm{H}_{\mathrm{z}} \rightarrow \mathrm{L}_{2}=\ell-6$
$\therefore \mathrm{n}_{1}=\frac{\mathrm{v}}{4 \mathrm{~L}_{1}}$ and $\mathrm{n}_{2}=\frac{\mathrm{v}}{4 \mathrm{~L}_{2}}$
$\therefore \frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=\frac{\mathrm{L}_{2}}{\mathrm{~L}_{1}} ; \frac{400}{300}=\frac{\ell-6}{\ell-10} ; \therefore \ell=22 \mathrm{~cm}$
$\frac{4}{3}=\frac{\ell-6}{\ell-10} ; 4 \ell-40=3 \ell-18$

$$
\ell=40-18=22 \mathrm{~cm}
$$

21. (A)
$\mathrm{F}_{\text {max }}=\mu \mathrm{N}=\mu \mathrm{mg} \cos \theta$
$=0.7 \times 2 \times 9.8 \times \frac{\sqrt{3}}{2}$
$=0.7 \times 0.8 \times \sqrt{3}$
$\mathrm{F}=-\mathrm{mg} \sin \theta=2 \times 9.8 \times \frac{1}{2}=9.8 \mathrm{~N}$

22. (C)

Change in pressure at an ideal gas which causes intermolecular distance.
23. (A)

Emissive power of block body is greater than emissive power of other bodies.
$\therefore \mathrm{E}_{\mathrm{R}}<\mathrm{E}_{\mathrm{B}}$
24. (C)
$\mathrm{E}=\mathrm{e} \sigma \mathrm{AT}^{4}$
$\therefore \mathrm{P}=\frac{\mathrm{E}}{\mathrm{t}}=\frac{\mathrm{e} \sigma \mathrm{AT}^{4}}{\mathrm{t}}$
$\mathrm{t}=1$ second
$\mathrm{P}=\mathrm{e} \sigma \mathrm{AT}^{4}$ watts
$=0.35 \times 5.7 \times 10^{-5} \frac{\mathrm{erg}}{\mathrm{cm}^{2} \mathrm{sec} \mathrm{k}^{4}} \times \mathrm{T}^{4} \times 0.30 \mathrm{~cm}^{2}$
$=0.35 \times 5.7 \times 10^{-5} \times(3000)^{4} \times 0.30 \times 10^{-7} \frac{\mathrm{~J}}{\mathrm{~s}}$
$=0.35 \times 5.7 \times\left(3 \times 10^{3}\right)^{4} \times 10^{-12} \times 0.3$
$=0.35 \times 5.7 \times 81 \times 0.30$
$=48.2$ watts
25. (C)
$\mathrm{E}=\mathrm{e} \sigma \mathrm{T}^{4}$
26. (A)
$h_{1} \rho_{1} g=h_{2} \rho_{2} g$
$4 \times 1.1 \times \mathrm{g}=2 \times \rho_{2} \times \mathrm{g}$
$2.2=\rho_{2}$
27. (C)
$\mu_{1} \lambda_{1}=\mu_{2} \lambda_{2}$
28. (A)

$\mu=\frac{\sin \mathrm{i}}{\sin \mathrm{r}}=\frac{\mathrm{BD} / \mathrm{AD}}{\mathrm{AC} / \mathrm{AD}}=\frac{\mathrm{BD}}{\mathrm{AC}}$
29. (B)

Red light deviates minimum.
30. (B)
path difference $=\mathrm{n} \lambda$ for bright point
$3.75 \times 10^{-6} \mathrm{~m}=\mathrm{n} \times 5 \times 10^{-7} \mathrm{~m}$
$\mathrm{n}=\frac{3.75}{5} \times \frac{10^{-6}}{17^{-7}}$
$=\frac{37.5}{5}=7.5$
$\mathrm{n}=7.5 \rightarrow$ not an integer
\therefore Point is dark
31. (B)

Sparkles of diamond is due to total internal reflection, which is due to high refractive index.
32. (A)

$$
\begin{aligned}
\frac{\mathrm{I}_{\max }}{\mathrm{I}_{\min }} & =\left(\frac{\sqrt{\mathrm{I}_{1}}+\sqrt{\mathrm{I}_{2}}}{\sqrt{\mathrm{I}_{1}}-\sqrt{\mathrm{I}_{2}}}\right)^{2} \\
& =\left(\frac{\sqrt{9}+\sqrt{4}}{\sqrt{9}-\sqrt{4}}\right)^{2} \\
& =\left(\frac{3+2}{3-2}\right)^{2} \\
& =\frac{25}{1}
\end{aligned}
$$

33. (D)
$R=n^{\frac{1}{3}} \mathrm{r}$
$\mathrm{C}^{1}=4 \pi \varepsilon_{0} \mathrm{R}$
$\mathrm{C}=4 \pi \varepsilon_{0} \mathrm{r}$
$\mathrm{Q}=\mathrm{nq}_{0}$
$\mathrm{q}_{0}=\mathrm{CV}=4 \pi \varepsilon_{0} \mathrm{rV}$
$\mathrm{V}^{1}=\frac{\mathrm{Q}^{1}}{\mathrm{C}^{1}}=\frac{\mathrm{nq}_{0}}{4 \pi \varepsilon_{0} \mathrm{R}}$
$V^{1}=n^{\frac{2}{3}} V$
$\frac{\mathrm{V}^{1}}{\mathrm{~V}}=\mathrm{n}^{\frac{2}{3}}$
$\mathrm{U}=\frac{1}{2} \mathrm{QV}$
$\mathrm{U} \alpha \mathrm{V}$
$\therefore \frac{\mathrm{U}^{1}}{\mathrm{U}}=\frac{\mathrm{V}^{1}}{\mathrm{~V}}$
$\frac{\mathrm{U}^{1}}{\mathrm{U}}=\mathrm{n}^{\frac{2}{3}}$
34. (C)
$\mathrm{V}=\mathrm{IR}$
$\therefore \mathrm{I} \alpha \frac{1}{\mathrm{R}}$
$\mathrm{R}=\rho \frac{\ell}{\mathrm{A}}$
$\therefore \frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}$
$\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\frac{\rho \frac{\ell_{2}}{\mathrm{~A}_{2}}}{\rho \frac{\ell_{1}}{\mathrm{~A}_{1}}}$
$\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\frac{\ell_{2}}{\mathrm{~A}_{2}} \times \frac{\mathrm{A}_{1}}{\ell_{1}}=\frac{\ell_{2}}{\ell_{1}} \times \frac{\mathrm{r}_{1}^{2}}{\mathrm{r}_{2}^{2}}=\left(\frac{\ell_{2}}{\ell_{1}}\right) \times\left(\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}\right)^{2}$
$=\frac{3}{4} \times\left(\frac{2}{3}\right)^{2}=\frac{3}{4} \times \frac{4}{9} \frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\frac{1}{3}$
35. (A)

Potential Gradient
$\mathrm{K}=\frac{\mathrm{V}}{\mathrm{L}}=\frac{6}{3}=2 \mathrm{~V} / \mathrm{m}$
\therefore potential difference across a length of 50 cm will be

$$
\begin{aligned}
\mathrm{V}^{1} & =\mathrm{K} \ell \\
\mathrm{~V}^{1} & =2 \times 0.5 \\
& =1 \mathrm{~V}
\end{aligned}
$$

36. (B)

If we keep obect at twice the focal length we will get real image of the size of object.
37. (B)
$I_{g}=0.04 \mathrm{I}$
$\frac{\mathrm{I}}{\mathrm{I}_{\mathrm{g}}}=\frac{\mathrm{G}+5}{5}=\frac{1}{0.04}$

$$
\frac{G+5}{5}=25
$$

$\mathrm{G}=24 \mathrm{~s}$
$\mathrm{G}=24 \times 5$

$$
=120 \Omega
$$

38. (A)
$\mathrm{I}=\frac{\mathrm{V}}{\mathrm{Z}}=\frac{\mathrm{V}}{\sqrt{\mathrm{R}^{2}+\mathrm{X}_{\mathrm{L}}^{2}}}=\frac{200}{\sqrt{30^{2}+20^{2}}}=\frac{200}{\sqrt{1300}}=\frac{20}{\sqrt{13}} \mathrm{~A}$
39. (C)

Magnetic potential, $V=\frac{\mu_{0}}{4 \pi} \cdot \frac{M}{r} \ldots .(M$ is pole strenght $)$

$$
=\frac{\left[\mathrm{MLT}^{-2} \mathrm{~A}^{-2}\right]\left[\mathrm{LA}^{-1}\right]}{[\mathrm{L}]}=\left[\mathrm{MLT}^{-2} \mathrm{~A}^{-1}\right]
$$

40. (C)
$\mathrm{P}_{\mathrm{av}}=\frac{\mathrm{i}_{\mathrm{m}}}{\sqrt{2}} \times \frac{\mathrm{e}_{\mathrm{m}}}{\sqrt{2}} \times \cos \phi$
$=\frac{4 \times 60}{2} \times \frac{1}{2}$
$\mathrm{P}_{\mathrm{av}}=60$ watts
41. (D)
$B=\frac{\ell I}{2 \pi r}$
$B \alpha \frac{I}{r}$
$B_{1}=\frac{1}{2} \quad \frac{B_{1}}{B_{2}}=\frac{1}{4}, \quad 1: 4$
$B_{2}=\frac{2}{1}$
42. (C)
$\mathrm{I}=\frac{\mathrm{NBA}}{\mathrm{Rt}}=\frac{20 \times 25 \times 10^{-4}}{100} \times 1000=0.5 \mathrm{~A}$
43. (C)
$\eta=\frac{\text { Output Power }}{\text { Input Power }}$
\therefore Output Power $=\eta \times$ Input Power
$=\frac{70}{100} \times \mathrm{v} \times \mathrm{i}$
$=\frac{70}{100} \times 210 \times 0.1$
$=14.7 \mathrm{~W}$
$\approx 15 \mathrm{~W}$
44. (D)

Radiowaves have energy less than the work function of every substance.
45. (D)
$\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{meV}}}$
$\frac{\lambda_{\mathrm{p}}}{\lambda_{\mathrm{c}}}=\sqrt{\frac{\mathrm{M}_{\mathrm{e}}}{\mathrm{M}_{\mathrm{p}}}}$
$\frac{\lambda_{\mathrm{e}}}{\lambda_{\mathrm{p}}}=\sqrt{\frac{\mathrm{M}_{\mathrm{p}}}{\mathrm{M}_{\mathrm{e}}}}$
46. (D)
$E_{n}=\frac{E_{1}}{n^{2}}=\frac{-13.6_{e} V}{n^{2}}$
$\mathrm{E}_{4}=\frac{-13.6_{\mathrm{e}} \mathrm{V}}{16}$
$E_{4}=-0.85{ }_{e} \mathrm{~V}$
47. (A)
$\mathrm{W}_{0}=\frac{\mathrm{hc}}{\lambda_{0}}$
$\therefore \lambda_{0}=\frac{\mathrm{hc}}{\mathrm{w}_{0}}=\frac{\mathrm{hc}}{\mathrm{w}_{0} \times \mathrm{c}}$
$=\frac{1240 \times 10^{9}}{2}$
$\lambda_{0}=6215 \AA$
48. (B)

For the working of a transiston, emitter junction should be forward biased and collector junction should be revers biased.
49. (C)

The Troposphere extends from the surface of earth upto a height of 12 km .
50. (D)

Inside a magnet magnetic lines are from south to north.

CHEMISTRY

51. (A)

52. (D)

Benzaldehyde with the help of base performs cannizzaro reaction.
(\because aromatic compound cannot do addition reaction with NaHSO_{3}) where as all ketones performs addition of salt reaction.
53. (A)

H - I - weak bond - easily breaks - releases H^{+}fastly hence - Strong Acid.
$\mathrm{H}-\mathrm{F}$ - Strong bond - not easily breaks - not releasing H^{+}fastly - hence less acidic (weak acid)
54. (A)

GeneralFormula $\mathrm{C}_{\mathrm{x}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{y}$
55. (D)

56. (C)

Tranquilizers are antidepressant.
57. (A)

Nylon - 6
Poly Caprolactum

58 (A)
In lanthanoids promethium is only radioactive. Rest all non radioactive.
59 (D)
Aldehyde \qquad Alkanal
Ether \qquad Alkoxy alkane
Alcohols \qquad Alkanol
Ketone \qquad Alkanone
60. (A)

Salt bridge increases junction potential which stops the current $\mathrm{I}=0$
So, $\mathrm{V}=0$
61. (C)

In order to solve such problem, first write the formule of molecule/compound
The formula of carbon dioxide CO_{2}
Molecular mass of $\mathrm{CO}_{2}=12.0+16.0 \times 2=44 \mathrm{~g} \mathrm{~mol}^{-1}$

Atomic mass of $\mathrm{C}=12.0 \mathrm{gatom}^{-1}$
Percentage of $\mathrm{C}=\frac{12}{44} \times 100=27.27 \%$
62. (C)

All the hydride compounds have 3 bonds pair and one lone pair as we more down. The group electronegativity of central atom decreases so, tendency to keep bond pair electron towards. The central atom decreases and to keep the lone pair ofelectron towards itself increases. Thus lone pair availability decreases down the group.
63. (D)

64. (B)

P is wrong \rightarrow Frenkel defect caused due to huge difference in size.
S is wrong \rightarrow Schottky defect decreases mass and density of substance
Q is correct \rightarrow Frenkel defect arises due to disallocation of atom.
R is correct \rightarrow Trapping of an electron in the lattice leads to formation of F-centre.
65. (C)
$\Delta T_{f}=K_{f} \times m=K_{f} \times \frac{\text { no. of moles of solute }}{\text { mass of solvent in kg }}$
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \times \mathrm{m}=\mathrm{K}_{\mathrm{b}} \times \frac{\text { no. of moles of solute }}{\text { mass of solvent in kg }}$
Both electrolyte are equimolar, hence both electrolyte from above formula will give same change in freezing point and same change in boiling point.
66. (D)
$\mathrm{H}_{2}+\mathrm{I}_{2} \longrightarrow 2 \mathrm{HI}$
\therefore Rate of reaction $=-\frac{\mathrm{d}\left(\mathrm{H}_{2}\right)}{\mathrm{dt}}=-\frac{\mathrm{d}\left(\mathrm{I}_{2}\right)}{\mathrm{dt}}=+\frac{1}{2} \frac{\mathrm{~d}[\mathrm{HI}]}{\mathrm{dt}}$
Multiplying by 2

$$
=-2 \times \frac{\mathrm{d}\left[\mathrm{H}_{2}\right]}{\mathrm{dt}}=-2 \times \frac{\mathrm{d}\left[\mathrm{I}_{2}\right]}{\mathrm{dt}}=\frac{\mathrm{d}[\mathrm{HI}]}{\mathrm{dt}}
$$

67. (D)

In $\mathrm{BrF}_{5}^{-}, \mathrm{Br}$ being less electronegative is the central atom.
In Br , no. of valence $\mathrm{e}^{-}=7$

5 F atoms shaped with 5 Br atoms.
So, no. of electrons shared $=5+5=10$
\therefore No. of bond pairs $=\frac{10}{2}=5$
No. of lone pair $=\frac{7-5}{2}=1$
Thus, the shape of BrF_{5} with $5 b p$ and $1 l p$ is square pyramidal.
68. (C)

1 molal aqueous solution
\downarrow
1 moles of solute present in 1 kg mass of water

$$
\rightarrow 1000 \mathrm{~g} \text { water } \rightarrow \mathrm{n}_{1}=\frac{\text { mass of water }}{\text { molar mass of water }}=\frac{1000 \mathrm{~g}}{18 \mathrm{~g} \mathrm{~mol}^{-1}}
$$

$=55.55 \mathrm{~mol}$
So mole fraction of solute $X_{2}=\frac{n_{2}}{n_{1}+n_{2}}=\frac{1}{1+55.55}=\frac{1}{56.55}=0.0177$
69. (C)
$\left[\mathrm{M}(\mathrm{en})_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right] \mathrm{NO}_{2}$
\therefore Let the oxidation number $=\mathrm{X}$
$\mathrm{X}+(2 \times$ charge of en $)+\left(1 \times\right.$ charge of $\left.\mathrm{C}_{2} \mathrm{O}_{4}\right)+\left(1 \times\right.$ charge of $\left.\mathrm{NO}_{2}\right)=0$
$\therefore \mathrm{X}+(2 \times 0)+(1 \times(.2))+(1 \times(-1))=0$
$\therefore \mathrm{X}-2-1=0 \quad \therefore \mathrm{X}=3$
\therefore en - gives 4 lone pair
$\mathrm{C}_{2} \mathrm{O}_{4}$ - gives 2 lone pair
6 lone pair means 6 Coordination number.
70. (D)

Hence, the oxidation state of all the elements remain the same as before. Thus, it does not involve oxidation or reduction processes. None of the elements changes its oxidation number.
71. (B)

Mineral of Iron
Pyrolusite $-\mathrm{MnO}_{2}$
Malachite $-\mathrm{Cu}(\mathrm{OH})_{2} \cdot \mathrm{CuCO}_{3}$

Cassiterite - SnO_{2}
Magnetite- $\mathrm{Fe}_{3} \mathrm{O}_{4}$
72. (A)

Potassium dichromate is a good oxidising agent, it oxidises other substance

73. (A)

Lithium being very small in size polarises a large CO_{3}^{2-} ion leading to the formation of more stable $\mathrm{Li}_{2} \mathrm{O}$ and CO_{2}. All the carbonates of alkali metals (except lithium carbonate) are thermally quite stable. That's why $\mathrm{Li}_{2} \mathrm{CO}_{3}$ is decomposed at a lower temperature whereas $\mathrm{Na}_{2} \mathrm{CO}_{3}$ at higher temperature.
74. (C)

(A)

(C)

75 (D)
$\mathrm{SN}^{2^{\prime}}$ s reactivity $\rightarrow 1^{\circ}>2^{\circ}>3^{\circ}$
So,

76. (C)

The product obtained by the hydrolysis of $\mathrm{Me}_{3} \mathrm{SiCl}$ contains only one -OH group which when subjected to polymerisation makes the polymer incapable for further polymerisation, thus, controls the chain length.
77. (B)

Order of basic characteristics in aqueous solution is
 due to both inductive effect and steric hindnance. Hence basic characteristics are,
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}>\mathrm{CH}_{3} \mathrm{NH}_{2}>\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
78. (C)

Clemmenson reaction
79. (C) Protium $\left(\mathrm{H}^{1}\right)$, deutrium $\left(\mathrm{H}^{2}\right)$ and tritium $\left(\mathrm{H}^{3}\right)$ are three isotopes of hydrogen. Thus, their mass ratio is $1: 2: 3$.
80. (C) Thermos flask - contains insulator \& insulated system is called as isolated system.
81. (B)

Electron withdrawing groups \uparrow ses acidity.
Electron releasing groups \downarrow ses acidity.
$-\mathrm{NO}_{2}=\mathrm{EWG}$
$-\mathrm{CH}_{3}=\mathrm{ERG}$
$-H=$ Neutral

82. (B) Water on calcium chloride is an example of absorption as water is also distributed in the bulk.
83. (D) Secondary cell \rightarrow rechargeable cell \rightarrow lead storage battery \& Nickel-cadmium storage cell.
84. (B)

thiophene
It is heterocyclic compound as it contains foreign element (element other than C and H) in the cyclic chain.
85. (B)

Greater the concentration of reactants faster is the reaction, i.e, as concentration increases rate also increases.
86. (D)

Carboxyl group - means - COOH group.

Formo group - means formyl group $-\underset{\text { H }}{\mathrm{C}}=0$

87. (D)

So, number of moles of cane sugar $=\frac{\text { Mass of sugarcane }}{\text { Molar mass of sugarcane }}=\frac{150}{342} \mathrm{~mol}$
Molar mass of sugarcane $=\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$

$$
\begin{aligned}
& =(\mathrm{C} \times 12)+(22+1-1)+(11 \times 0) \\
& =(12 \times 12)+(22 \times 1)+(11 \times 16) \\
& =144+22+176 \\
& =342 \mathrm{~g} \mathrm{~mol}^{-1}
\end{aligned}
$$

$\mathrm{T}=(150+273) \mathrm{k}$
$=423 \mathrm{k}$
So, $\mathrm{PV}=\mathrm{nRT}$
$\therefore \mathrm{P}=\frac{\frac{150}{342} \times 0.0821 \times 423}{1 \mathrm{~L}}$
$=15.05 \mathrm{~atm}$
88. (C)
$\mathrm{a} / \mathrm{c} \mathrm{KOH}=$ elimination (Base)
(X)

$$
\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{I} \longrightarrow
$$

X)

(Y)

89. (C) Phenol $+\mathrm{FeCl}_{3} \longrightarrow$ Violet colour

Benzoic acid $+\mathrm{FeCl}_{3} \longrightarrow$ No colour
90. (C) Milk is lime is a suspension of slaked lime in water.
91. [D]
$\therefore 10 \mathrm{~g} / \mathrm{L}$ of urea is Isotonic with $5 \% \mathrm{~W} / \mathrm{V}-$ nonvolatile solute

$\therefore \mathrm{C}_{\text {urea }} \quad=\quad \mathrm{C}_{\text {non-vatatile }}$
$\therefore \frac{\mathrm{n}_{\text {urea }}}{\mathrm{V}_{\text {urea }}}=\frac{\mathrm{n}_{\text {non-volatile }}}{\mathrm{V}_{\text {non-volatile }}}$
$\therefore \frac{\text { Mass }_{\text {urea }}}{\text { Molar mass }_{\text {urea }} \times \mathrm{V}_{\text {urea }}}=\frac{\text { Mass }_{\text {(non-volatile) }}}{\text { Molar mass of non }- \text { volatile } \times \mathrm{V}_{\text {non-volatile }}}$
$\therefore \frac{10 \mathrm{~g}}{60 \mathrm{~g} \mathrm{~mol}^{-1} \times 1 \mathrm{~L}}=\frac{50 \mathrm{~g}}{\text { Molarmass of non }- \text { volatile } \times 1 \mathrm{~L}}$
\therefore Molarmass of non - volatile $=\frac{50 \mathrm{~g} \times 60 \mathrm{~g} \mathrm{~mol}^{-1}}{10}$
$=300 \mathrm{~g} \mathrm{~mol}^{-1}$
92. (C) $2 \mathrm{O}_{3} \xrightarrow{\Delta} 3 \mathrm{O}_{2}$
$\mathrm{O}_{3} \longrightarrow \frac{3}{2} \mathrm{O}_{2}$
93. (B)

Alumina is amphoteric oxide, which reacts with acid as well as base.
94. (D)

Binary means -2 i.e. 1 solute, +1 solvent can be having any phase forms binary solution.
95. (B)

In haloarenes $\mathrm{C}-\mathrm{X}$ bond can be broken and replaced by ${ }^{-} \mathrm{OH},{ }^{-} \mathrm{CN},{ }^{-} \mathrm{NH}_{2}$ under high pressure.

96. (C)

2,3 dimethyl butane

above structure (carbon skeleton) can be prepared from iso propyl iodide.

97. (C)

Normality $=\frac{\text { Gmeq.wt.of solute }}{\text { Volume of solution in } \mathrm{dm}^{3}}=\frac{29 \mathrm{~g} \text { eq. }}{1 \mathrm{dm}^{3}}$
= two normal solution.
98. (A)

Phenol is known as carbolic acid
99. (A)
$\mathrm{C}_{(\mathrm{s})}+2 \mathrm{H}_{2(\mathrm{~g})} \longrightarrow \mathrm{CH}_{4(\mathrm{~g})} \quad \ldots \Delta \mathrm{H}=$?
$\therefore \Delta \mathrm{H}=\Sigma \Delta_{\mathrm{C}} \mathrm{H}_{\text {(reactant) }}-\Sigma \Delta_{\mathrm{c}} \mathrm{H}_{\text {(product) }}$
$=\left[\left(1 \times \Delta_{\mathrm{c}} \mathrm{H}_{(\mathrm{c})}\right)+\left(2 \times \Delta_{\mathrm{c}} \mathrm{H}_{\left(\mathrm{H}_{2}\right)}\right)\right]-\left[1 \times \Delta_{\mathrm{c}} \mathrm{H}_{\left(\mathrm{CH}_{4}\right)}\right]$
$=[(-393.71)+(2 \times-285.77)]-[1 \times-890.36]$
$=[-393.71-571.54]-[-890.36]$
$=[-965.25]+890.36$
$=-74.86 \mathrm{~kJ}$
100. (A) (A) 0.1 M - Sugar solution - non electrolyte $\rightarrow 0.1 \mathrm{M}$
(B) $0.1 \mathrm{M}-\mathrm{KCl}-0.1 \mathrm{k}^{+}+0.1 \mathrm{Cl}^{-1}=0.2 \mathrm{M}$ - strong electrolyte $\rightarrow 0.2 \mathrm{M}$
(C) $0.1 \mathrm{M} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}=0.1 \mathrm{Ba}^{2+}+0.2 \mathrm{NO}_{3}^{-}=0.3 \mathrm{M} \rightarrow 0.3 \mathrm{M}$
(D) 0.1 M silver nitrate $-0.1 \mathrm{AgNO}_{3}<\mathrm{S}_{0.1 \mathrm{NO}_{3}^{-}}^{0.1 \mathrm{Ag}^{+}} \rightarrow 0.2 \mathrm{M}$

As the increase in nonvolatile solute in a volatile solvent decreases the vapour pressure. So, less number of moles is there in sugar solution. So it will give highest pressure of vapour.

