	GuruAanklan /	Grand Test / Elect	tronics Pap	ver - II / HSC Digita		/ Code - A / C	₽
G	RAND	ELEC HSC DI	TRONI GITAL PAPE	CS PAPER ELECTROI R - 1A1	- II NICS	Duration : M.M. :	: 3 Hrs. 50
Q.1A (1) (2) (3) (4)	Select the cor For mod 150 c (A) 10 In is s (A) Floppy dis In T Elimfon th	rect alternatives a counter, filp-flops in (B) 15 f $A = 0, B = C$, th (B) NAN sequential access s sk (B) Hard	and rewrit required ar- en output D gate secondary s disk	The contract C (C) 8 Y = C (C) NOR gate to rage. (C) magnetic tag	(D) 9 (D) EX pe (D) no	I X-ORgate ne of the above	(4 M)
B (1)	 In 1-Flipflop the output frequency is (A) same as input frequency (B) one half of its input frequence (C) double of its input frequency (D) none of above Attempt any two of the following. Subtract the following binary numbers using 1's complement method: (A) (11010) (110111) (B) (11011) (11011) 						(6M)
(2) (3) Q.2A (1) (2) (3)	 (A) (11010)₂ = (110111)₂ (B) (11011)₂ = (11011)₂ How J-K flip-flop is constructed by using R-S flip-flop? Write its truth table. Write a note on EBCDIC code. Attempt two of the following What is a register? Give any 4 applications of registers Draw the diagram of 4-bit left shift register using D flip-flop and explain the working Solve the following: 						(6M)
B (1) (2) Q. 3A	(A) $(25)_{10} = (.$ Attempt any Draw block di Write a note o Attempt any	$(B) (C5)_{10}$ one the following iagram of compute on Shift register two of the following	$_{6} = (\dots)_{10}$ For and explaining	(C) $(69)_{10} = ($	B_{BCD} (D) (B_{BCD}), (D) (B_{BCD}) (D) (B_{BCD})	$(37C)_{16} = ()_2$	(4M) (6M)
(1) (2) (3)	Define Counte Implement th IC 74150. f (A Explain the wo	er. State the applicate of the sphere of th	ations of contrast $(0, 2, 3, 6, 0)$	ounters. State type multiplexer IC w 8, 9, 12, 14) g D flip-flops.	s of counters. hich has invo Website : v	erted inputs s	uch as

GuruAanklan / Grand Test / Electronics Paper - II / HSC Digital Electronics / Code - A / QP						
B (1)	Attempt any one the following Draw logic diagram and symbol of clocked R-S flip-flop. Explain itd working with help of truth table. Write its limitation (disadvantage)	(4M) th the				
(2) Q.4A (1) (2)	Explain the working of edge triggered T flip-flop. Attempt any two of the following State various types of volatile memories. Draw the logic circuit for the Boolean expression	(6M)				
(2)	$Y = (A + B)(\overline{AB})$. Write the truth table and name the gates used					
(3) B (1)	Explain the working of CMOS NOR gate with necessary circuit diagram Attempt any one the following Draw and explain basic circuit of CMOS NAND gate.	(4M)				
(2) Q.5A (1)	State types of D/A converters Explain the working of any one type and state its disadvant Attempt any two of the following Explain successive approximation type ADC.	ages. (6M)				
(2) (3) B	Explain the working of counter type A/D converter. Define half-adder in Boolean algebra. Explain the table of combinations for half-adder.					
b (1) (2)	Draw logic diagram of decade counter and explain its working. What are the types of secondary memory devices?	(4141)				
	OR					
Q.5A (1) (2) (3)	Attempt any Two of the following What is logic family? Give different types of logic families. Draw and explain TTL inverter (NOT) circuit. Explain the concept of 1 - bit memory cell.	(6M)				
B	Attempt any one of the following	(4M)				
(1)	Draw the logic diagram for following Boolean expression using basic gates only Write its table.	s truth				
(2)	What will be the output voltage of 4 bit R-2R ladder for binary input $(1011)_2$. Given logic 0	0 = 0V				

and logic 1 = 32 volts.

2