Guru Aantlan

GRAND
 TEST

SSC EXAMINATION GEOMETRY (SET-A)

Marks : 40 Duration : 2 Hrs.

Note:- i. Solve all questions. Draw diagrams wherever necessary.
ii. Use of calculator is not allowed.
iii. Diagram is essential for writing the proof of the theorem
iv. Marks of Constructions should be distinct. They should not be rubbed off.
Q. 1 Solve any five sub-questions:
[5M]

1. In the following figure $\operatorname{Seg} A B \perp \operatorname{Seg} B C$,

Seg $D C \perp \operatorname{Seg} B C$.
If $A B=2$ and $D C=3$,
find $\frac{A(\triangle A B C)}{A(\triangle D C B)}$

2. Find the slope of the line having inclination 60°
3. If the angle $\theta=-60^{\circ}$, find the value of $\cos \theta$
4. Find the diagonal of a square whose side is 10 cm .
5. If the volume of a cube is $1000 \mathrm{~cm}^{3}$, find the side of the cube.
6. In the following figure,
$m(\operatorname{arc} P M Q)=130^{\circ}$,
find $\angle P Q S$.

Q. 2 Solve any four sub-questions:

1. If $\sin \theta=\frac{7}{25}$, where θ is an acute angle, find the value of $\cos \theta$ by using identities
2. Draw $\angle A B C$ of measure 125° and bisect it.
3. For the angle in standard position if the initial arm rotates 25° in anticlockwise direction then state the quadrant in which terminal arm lies.
4. Find the area of sector whose arc length and radius as 10 cm and 5 cm respectively.
5. In the following figure, in $\triangle P Q R$,
$\operatorname{seg} R S$ is the bisector of $\frac{3}{2}$.
If $P S=6, S Q=8, P R=15$, find $Q R$.

6. In the following figure, a tangent segment PA touch the circle at A and a secant PBC intersects the circle at point C and B . If $\mathrm{AP}=13$ and $\mathrm{BP}=6$, find BC .

Q. 3 Solve any three sub-questions.

1. In the Following figure,

quadrilateral. $m(\operatorname{arc} A B C)=210^{\circ}$.
Find $\angle A B C, \angle C D A$ and $\angle C B E$.

2. Draw the circumcircle of $\triangle P M T$ in which $\mathrm{PM}=5.4 \mathrm{~cm}, \angle P=60^{\circ}, \angle M=70^{\circ}$.
3. In $\triangle P Q R, \angle P=30^{\circ}, \angle Q=60^{\circ}, \angle R=90^{\circ}$ and $\mathrm{PQ}=8 \mathrm{~cm}$, then find PR and QR .
4. Show that $\sqrt{\frac{1+\sin x}{1-\sin x}}=\sec x+\tan x$.
5. Find the volume and surface area of a sphere of radius $4.2 \mathrm{~cm} .\left(\pi=\frac{22}{7}\right)$
Q. 4 Solve any two sub-questions:
6. Prove that, "the length of the two tangent segment to a circle drawn from an external point are equal."

7. Two buildings are in front of each other on either side of a road of width 10 metre. From the top of the first building which is 30 metre high the angle of elevation to the top of the second is 45° what is the height of the second building?
8. The length of semi circular tunnel is 2 km and diameter is 7 m . Find the expenditure for diggingthe tunnel at the rate of Rs. 600 per m^{3}. Find the expenditure for plastering the inner side of the tunnel at the rate of Rs. 50 per sq.m.

Q. 5 Solve any two sub-questions.

[10M]

1. Prove that, in a triangle, the angle bisector divide the side opposite to the angle in the ratio ofthe remaining sides.
2. Write down the equation of a line whose slope is $\frac{3}{2}$ and which passes through point P, where P divides the line segment AB joining $\mathrm{A}(-2,6)$ and $\mathrm{B}(3,-4)$ in the ratio $2: 3$.
3. Draw a triangle PQR right angled at Q such that $\mathrm{PQ}=3 \mathrm{~cm}, \mathrm{QR}=4 \mathrm{~cm}$. Now construct $\triangle A Q B$ similar
