
Q. 1 Attempt any four of the following:
(1) $\mathrm{t}_{\mathrm{n}}=\mathrm{n}^{2}+\mathrm{n}$

For $\mathrm{n}=2, \mathrm{t}_{2}=2^{2}+2$
$\mathrm{t}_{2}=4+2=6$
For $\mathrm{n}=3, \mathrm{t}_{3}=3^{2}+3$
$\mathrm{t}_{3}=9+2=12$
$\therefore \mathrm{t}_{2}=6$ and $\mathrm{t}_{3}=12$
(2) $x-4 x^{2}+5=0$
$\therefore 4 \mathrm{x}^{2}-\mathrm{x}-5=0$
Comparing with $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$
$\mathrm{a}=4, \mathrm{~b}=-1, \mathrm{c}=-5$
(3) Find the next two terms of the sequence 192, - $96,48,-24 \ldots$...
$\mathrm{t}_{5}=\frac{\mathrm{t}_{4}}{-2}$
$\mathrm{t}_{5}=\frac{-24}{-2}=12$
$t_{6}=\frac{t_{5}}{-2}$
$\mathrm{t}_{6}=\frac{12}{-2}=-6$
\therefore Next two terms are $\mathrm{t}_{5}=12$ and $\mathrm{t}_{6}=-6$
(4) $(P-4) P=0$
$\therefore \mathrm{P}^{2}-4 \mathrm{P}=0$
\therefore Degree of the equation is 2 and $\mathrm{a} \neq 0$
Hence it is a quadratic equation
(5) If a $=2.5$ and $\mathrm{d}=1.5$
\therefore First term $=\mathrm{a}=2.5$
Second term $=\mathrm{t}_{2}=\mathrm{a}+\mathrm{d}=2.5+1.5$
$\mathrm{t}_{2}=4$
Third term $=\mathrm{t}_{3}=\mathrm{t}_{2}+\mathrm{d}=4+2.5$
$\mathrm{t}_{3}=6.5$

Q. 2 Attempt any three of the following :

1) The given A.P. $1,7,13,19$ \qquad
First term $=\mathrm{a}=1$
Common difference $=7-1=6$
$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$\mathrm{t}_{18}=1+(18-1) \times 6$
$\mathrm{t}_{18}=1+17 \times 6$
$\mathrm{t}_{18}=1+102=103$
Eighteen term of the given A.P. is 103
(2) Let the three consecutive terms in A.P. be $a-d, a, a+d$
According to the condition
$\therefore a-d+a+a+d=27$
$\therefore 3 a=27$
$\therefore \mathrm{a}=9$
$\mathrm{a}(\mathrm{a}-\mathrm{d})(\mathrm{a}+\mathrm{d})=504$
$(9-d)(9+d)=\frac{504}{9}$
$9^{2}-d^{2}=\frac{504}{9}$
$81-\mathrm{d}^{2}=56$
$\mathrm{d}^{2}=81-56$
$d^{2}=25$
$d= \pm 5$
The three terms are 14, 9, 4 OR 4, 9, 14
(3) One root of the quadratic equation is 4

Hence it satisfies the equation
...[1/2M]
\therefore Substitute $\mathrm{x}=4$ in $\mathrm{x}^{2}-7 \mathrm{x}+\mathrm{k}=0$
$\therefore(4)^{2}-7 \times 4+\mathrm{k}=0$
$\therefore 16-28+\mathrm{k}=0$
$\therefore-12+\mathrm{k}=0$
$\therefore \mathrm{k}=12$
...[1/2M]
Hence value of k is 12
(4) The given equation is $2 x^{2}+5 \sqrt{3} x+16=0$

Compare it with $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$
$\mathrm{a}=2, \mathrm{~b}=5 \sqrt{3}, \mathrm{c}=16$
$\Delta=b^{2}-4 \mathrm{ac}$
$\Delta=(5 \sqrt{3})^{2}-4 \times 2 \times 16$
$\Delta 25 \times 3-128$
$\Delta=75-128$
$\Delta=-53$
$\therefore \Delta<0$
\therefore No real roots for the equation.

Q. 3 Attempt any Two of the following :

(1) The given equation is $3 y^{2}+7 y+1=0$

Divide throughout by 3
$3 y^{2}+7 y+1=0$
$y^{2}+\frac{7}{3} y=-\frac{1}{3}$
\therefore Third term $=\left(\frac{1}{2} \times \text { co }- \text { efficient of } \mathrm{y}\right)^{2}$
$=\left(\frac{1}{2} \times \frac{7}{3}\right)^{2}$
$=\left(\frac{7}{6}\right)^{2}$
$=\frac{49}{36}$

Adding this on both sides of equation (1)
$\mathrm{y}^{2}+\frac{7}{3} \mathrm{y}+\frac{49}{36}=-\frac{1}{3}+\frac{49}{36}$
$\left(y+\frac{7}{6}\right)^{2}=\frac{-12+49}{36}$
$\left(y+\frac{7}{6}\right)^{2}=\frac{37}{36}$
$\therefore \mathrm{y}+\frac{7}{6}= \pm \sqrt{\frac{37}{36}}$
$\therefore \mathrm{y}=-\frac{7}{6}+\sqrt{\frac{37}{36}}$ OR $\mathrm{y}=-\frac{7}{6}-\sqrt{\frac{37}{36}}$
$\therefore \mathrm{y}=\frac{-7+\sqrt{37}}{6}$ OR $\mathrm{y}=\frac{-7-\sqrt{37}}{6}$
\therefore Solution set $\left\{\left(\frac{-7+\sqrt{37}}{6}, \frac{-7-\sqrt{37}}{6}\right)\right\}$
2) Number of rows in the meeting hall are
$20,24,28 \ldots$.
... $\left.{ }^{1} / 2 \mathrm{M}\right]$
which is in A.P. with
First term $=\mathrm{a}=20$
Common difference $=\mathrm{d}=24-20=4$
Hall has 30 rows $\therefore \mathrm{n}=30$
To find the total number of seats in the hall
i.e. S_{30}
$\therefore \mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
$\therefore \mathrm{S}_{30}=\frac{30}{2}[2 \times 20+(30-1) \times 4]$
$\therefore \mathrm{S}_{30}=15[40+(29) \times 4]$
$\therefore \mathrm{S}_{30}=15[40+116]$
$\therefore \mathrm{S}_{30}=15[156]$
$\therefore \mathrm{S}_{30}=2340$
Hence total number of seats in the hall are 2340
(3) Let the breadth of the rectangle be ' x ' cm

Hence length of the rectangle is ' $x+2$ ' cm
According to the condition
$\ell \times \mathrm{b}=$ area of rectangle
$x \times(x+2)=24$
$\mathrm{x}^{2}=2 \mathrm{x}-24=0$
$\mathrm{x}^{2}+6 \mathrm{x}-4 \mathrm{x}-24=0$
$x \times(x+6)-4 \times(x+6)=0$
$(x+6)(x-4)=0$
$\mathrm{x}+6=0$ or $\mathrm{x}-4=0$
$\therefore \mathrm{x}=-6$ or $\mathrm{x}=4$
But the length cannot be negative $\therefore \mathrm{x}=-6$ is not acceptable
Hence breadth of the rectangle is 4 cms
Hence length of the rectangle is $x+2=4+2=6 \mathrm{cms}$

Q. 4 Attempt any one of the following :

(1)

$$
\begin{equation*}
2\left(x^{2}+\frac{1}{x^{2}}\right)-9\left(x+\frac{1}{x}\right)+14=0 \tag{1}
\end{equation*}
$$

$\operatorname{Let}\left(x+\frac{1}{x}\right)=m$
$\therefore\left(\mathrm{x}^{2}+\frac{1}{\mathrm{x}^{2}}\right)=\mathrm{m}^{2}-2$
Substitute in equation (1)
$2\left(m^{2}-2\right)-9(m)+14=0$
$2 \mathrm{~m}^{2}-4-9 \mathrm{~m}+14=0$
$2 m^{2}-9 m+10=0$
$2 \mathrm{~m}^{2}-4 \mathrm{~m}-5 \mathrm{~m}+10=0$
$2 \mathrm{~m} \times(\mathrm{m}-2)-5 \times(\mathrm{m}-2)=0$
$(2 m-5)(m-2)=0$
$\therefore 2 \mathrm{~m}-5=0$ OR $\mathrm{m}-2=0$
$\therefore 2 \mathrm{~m}=5$
$\therefore \mathrm{m}=\frac{5}{2}$ or $\mathrm{m}=2$

Re-substitute $\left(x+\frac{1}{x}\right)=m$
$\mathrm{x}+\frac{1}{\mathrm{x}}=\frac{5}{2}$ OR $\mathrm{x}+\frac{1}{\mathrm{x}}=2$
Considering $\mathrm{x}+\frac{1}{\mathrm{x}}=\frac{5}{2}$
Multiplying throughout by 2 x
$2 \mathrm{x}^{2}+2=5 \mathrm{x}$
$\therefore 2 \mathrm{x}^{2}-5 \mathrm{x}+2=0$
$\therefore 2 \mathrm{x}^{2}-4 \mathrm{x}-\mathrm{x}+2=0$
$\therefore 2 \mathrm{x} \times(\mathrm{x}-2)-1 \times(\mathrm{x}-2)=0$
$\therefore(\mathrm{x}-2)(2 \mathrm{x}-1)=0$
$\therefore \mathrm{x}-2=0$ OR $2 \mathrm{x}-1=0$
$\therefore \mathrm{x}=2$ OR $\mathrm{x}=\frac{1}{2}$
Considering $\mathrm{x}+\frac{1}{\mathrm{x}}=2$
Multiplying x on both sides
$\mathrm{x}^{2}+1=2 \mathrm{x}$
$\therefore \mathrm{x}^{2}-2 \mathrm{x}+1=0$
$\therefore(\mathrm{x}-1)^{2}=0$
$\therefore \mathrm{x}-1=0$
$\therefore \mathrm{x}=1$
\therefore Solution set $=\left\{1,2 \frac{1}{2}\right\}$
(2) $t_{11}=16$ and $t_{21}=29$

Let the first term $=\mathrm{a}$, common difference $=\mathrm{d}$
$\mathrm{t}_{\mathrm{n}}=[\mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
$\mathrm{t}_{11}=[\mathrm{a}+(11-1) \mathrm{d}]$
$16=[a+10 d]$
$a+10 d=16$
$\mathrm{t}_{21}=[\mathrm{a}+(21-1) \mathrm{d}]$
$29=[a+20 d]$
$a+20 d=29$
Substracting (1) from (2)
$10 \mathrm{~d}=13$
$\therefore \mathrm{d}=\frac{13}{10}=1.3$
Substitute in equation (1)
$a+10 \times \frac{13}{10}=16$
$a+13=16$
$a=16-13=3$
$\therefore \mathrm{a}=3$
$\mathrm{t}_{\mathrm{n}}=[\mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
$\therefore \mathrm{t}_{34}=[3+(34-1) \times 1.3]$
$\therefore \mathrm{t}_{34}=[3+(33) \times 1.3]$
$\therefore \mathrm{t}_{34}=[3+42.9]$
$\therefore \mathrm{t}_{34}=45.9$
n such that $\mathrm{t}_{\mathrm{n}}=55$
$\mathrm{t}_{\mathrm{n}}=[\mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
$\therefore 55=[3+(\mathrm{n}-1) \times 1.3]$
$\therefore 55-3=[(\mathrm{n}-1) \times 1.3]$
$\therefore 52=[(\mathrm{n}-1) \times 1.3]$
$\therefore \frac{52}{1.3}=(\mathrm{n}-1)$
$\therefore 40=n-1$
$\therefore \mathrm{n}=40+1$
$\therefore \mathrm{n}=41$
First term $=\mathrm{a}=3$
Common difference $=\mathrm{d}=1.3$

$$
\mathrm{t}_{34}=45.9
$$

n such that $\mathrm{t}_{\mathrm{n}}=55=41$

