Guru Aanlzlan

GuruAanklan Foundation / MHT-CET / Examination Mathematics

Set - [A]

MATHEMATICS

General Instructions:

(i) The test is of $11 / 2$ hours duration. This Question Paper is of total \qquad Pages
(ii) This paper consists of $\mathbf{5 0}$ questions. The maximum marks are 100.
(iii) There is ONE part in the question paper.

The distribution of marks is as under for each correct response.
Q. No.1-50 - MATHEMATICS (+2, 0) (100 marks) - 50 questions
(iv) Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct. Candidates will be awarded TWO marks each for indicating correct response of each question \& there is no negative marking.

MATHEMATICS

[Single Answer Choice Type]

This Section contains $\mathbf{5 0}$ Single choice questions. Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

1. If P is a point on an ellipse $5 \mathrm{x}^{2}+4 \mathrm{y}^{2}=80$ whose foci are S and S^{\prime}. Thus PS $+\mathrm{PS}^{\prime}=$ \qquad
(A) $4 \sqrt{5}$
(B) 4
(C) 8
(D) 10
2. The value of $\int \mathrm{e}^{\mathrm{x}}\left[\frac{\sqrt{1-\mathrm{x}^{2}} \sin ^{-1} \mathrm{x}+1}{\sqrt{1-\mathrm{x}^{2}}}\right] \mathrm{dx}$ is \qquad
(A) $\mathrm{e}^{\mathrm{x}} \sin ^{-1} \mathrm{x}+\mathrm{c}$
(B) $-e^{x} \sin ^{-1} x+c$
(C) $\frac{\mathrm{e}^{\mathrm{x}}}{\sqrt{1-\mathrm{x}^{2}}}+\mathrm{c}$
(D) $\frac{-e^{x}}{\sqrt{1-x^{2}}}+c$
3. If $\int x f(x) d x=\frac{1}{2} f(x)+c$ then $f(x)$ is \qquad
(A) e^{x}
(B) e^{-x}
(C) $\log x$
(D) $e^{x^{2}}$
4. The value of $\int \frac{\sin x}{\sin 3 x} d x$ is \qquad
(A) $\frac{1}{\sqrt{3}} \log \left|\frac{\sqrt{3}-\tan x}{\sqrt{3}+\tan x}\right|+c$
(B) $\frac{1}{2 \sqrt{3}} \log \left|\frac{\sqrt{3}-\tan x}{\sqrt{3}+\tan x}\right|+c$
(C) $\frac{1}{\sqrt{3}} \log \left|\frac{\sqrt{3}+\tan x}{\sqrt{3}-\tan x}\right|+c$
(D) $\frac{1}{2 \sqrt{3}} \log \left|\frac{\sqrt{3}+\tan x}{\sqrt{3}-\tan x}\right|+c$
5. $\int_{0}^{2 \pi} e^{x}\left(\frac{x}{2}+\frac{\pi}{4}\right) d x=$ \qquad
(A) $\sqrt{2}$
(B) $2 \sqrt{2}$
(C) $\mathrm{e}^{2 \pi}\left(\frac{5 \pi}{4}-\frac{1}{2}\right)+\frac{1}{2}-\frac{\pi}{4}$
(D) $\mathrm{e}^{2 \pi}\left(\frac{5 \pi}{4}-\frac{1}{2}\right)+\frac{1}{2}+\frac{\pi}{4}$
6. The equation of line passing through the point $(-5,4)$ and making the intercept of length $\frac{2}{\sqrt{5}}$ between the lines $x+2 y-1=0$ and $x+2 y+1=0$ is.....
(A) $2 \mathrm{x}-\mathrm{y}+4=0$
(B) $2 \mathrm{x}-\mathrm{y}-14=0$
(C) $2 \mathrm{x}-\mathrm{y}+14=0$
(D) None of these
7. If $f(a+b-x)=f(x)$ then $\int_{a}^{b} x f(x) d x=$ \qquad
(A) $\frac{a+b}{2} \int_{a}^{b} f(b-x) d x$
(B) $\frac{a+b}{2} \int_{a}^{b} f(x) d x$
(C) $\frac{b-a}{2} \int_{a}^{b} f(x) d x$
(D) $\frac{b-a}{2} \int_{a}^{b} f(b-x) d x$
8. Area of the region bounded by the parabola $y=x^{2}$ and the line $y=4 x$ is \qquad
(A) $\frac{32}{3}$ sq.units
(B) $\frac{16}{3}$ sq.units
(C) $\frac{8}{3}$ sq.units
(D) $\frac{4}{3}$ sq.units
9. Particular solution for the differential equation, $\cos \left(\frac{d y}{d x}\right)=a \operatorname{a}, \alpha \in R, y(0)=2$ is \qquad
(A) $\sin \left(\frac{y+2}{x}\right)=a$
(B) $\sin \left(\frac{y-2}{x}\right)=a$
(C) $\cos \left(\frac{y+2}{x}\right)=a$
(D) $\cos \left(\frac{y-2}{x}\right)=a$
10. The solution of the differential equation $\frac{d y}{d x}=(4 x+y+1)^{2}$ is \qquad
(A) $(4 x+y+1)=2 \tan (2 x+k)$
(B) $(4 x+y+1)^{3}=3 \tan (2 x+k)$
(C) $(4 x+y+1)^{2}=2 \tan (2 x+k)$
(D) $(4 x+y+1)=3 \tan (2 x+k)$
11. If for the triangle perimeter is 37 cms and length of sides are in G.P. also the length of the smallest side is 9 cms , then length of remaining two sides are \qquad and \qquad
(A) 12,16
(B) 14,14
(C) 10,18
(D) 15,13
12. The bacteria culture grows at a rate proportional to its size. After 2 hours there are 600 bacteria and after 8 hours the count is 75000 , then its initial population is \qquad
(A) 102
(B) 120
(C) 124
(D) 142
13. A random variable X has the following probability distribution

$\mathrm{X}=\mathrm{x}$	-2	-1	0	1	2	3
$\mathrm{P}[\mathrm{X}=\mathrm{x}]$	0.1	k	0.2	2 k	0.3	k

then the expected value is \qquad
(A) 0.6
(B) 0.5
(C) 0.7
(D) 0.8
14. The probability distribution of X , the number of defects per 10 meter of a fabric as

$\mathrm{X}=\mathrm{x}$	0	1	2	3	4
$\mathrm{P}[\mathrm{X}=\mathrm{x}]$	0.45	0.35	0.15	0.03	0.02
then variance (x) is					

\qquad
(A) 0.5326
(B) 0.82
(C) 1.54
(D) 0.8676
15. If X has binomial distribution with mean ' np ' and variance ' $n p q$ ' then $\frac{\mathrm{P}[\mathrm{X}=\mathrm{k}]}{\mathrm{P}[\mathrm{X}=\mathrm{k}-1]}$ is \qquad
(A) $\frac{\mathrm{n}-\mathrm{k}}{\mathrm{k}-1} \cdot \frac{\mathrm{p}}{\mathrm{q}}$
(B) $\frac{\mathrm{n}-\mathrm{k}+1}{\mathrm{k}} \cdot \frac{\mathrm{p}}{\mathrm{q}}$
(C) $\frac{n+1}{k} \cdot \frac{p}{q}$
(D) $\frac{\mathrm{n}-1}{\mathrm{k}+1} \cdot \frac{\mathrm{p}}{\mathrm{q}}$
16. A common tangent to $9 x^{2}-16 y^{2}=144$ and $x^{2}+y^{2}=9$ is
(A) $y=3 \sqrt{\frac{2}{7}} x+\frac{15}{\sqrt{7}}$
(B) $y=2 \sqrt{\frac{3}{7}} x+15 \sqrt{7}$
(C) $y=\frac{3}{\sqrt{7}} x+\frac{15}{\sqrt{7}}$
(D) $y=2 \sqrt{\frac{3}{7}} x+15 \sqrt{7}$
17. The contrapositive of the statement pattern $(p \vee q) \rightarrow r$ is \qquad
(A) $\mathrm{r} \rightarrow(\mathrm{p} \vee \mathrm{q})$
(B) $\sim \mathrm{r} \rightarrow(\mathrm{p} \vee \mathrm{q})$
(C) $\sim \mathrm{r} \rightarrow(\sim \mathrm{p} \wedge \sim \mathrm{q})$
(D) $\mathrm{p} \rightarrow(\mathrm{q} \vee \mathrm{r})$
18. The disjunction $\mathrm{pv} \sim \mathrm{q}$ is false only when \qquad
(A) both p and q are false
(B) p is true and q is false
(C) p is false and q is true
(D) both p and q are true
19. The simple logical expression of $(\sim \mathrm{p} \wedge \mathrm{q}) \vee(\sim \mathrm{p} \wedge \sim \mathrm{q}) \vee(\mathrm{p} \wedge \sim \mathrm{q})$ is \qquad
(A) $\sim p \vee q$
(B) $\sim \mathrm{p} \vee \sim \mathrm{q}$
(C) $\mathrm{p} \vee \sim \mathrm{q}$
(D) $\mathrm{p} \wedge \sim \mathrm{q}$
20. If a nilpotent matrix of order 2 then $A(1+A)^{n}$ is equal to
(A) A
(B) 0
(C) A^{2}
(D) A^{-1}
21. If the line $x-1=0$ is the directrix of the parabola $y^{2}-k x+8=0$ then one of the value of k is
(A) 4
(B) $\frac{1}{8}$
(C) $\frac{1}{4}$
(D) 8
22. Let $\mathrm{A}=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right]$, if u_{2} and u_{3} are column matrices such that $\mathrm{Au}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \mathrm{Au}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ then,
$\mathrm{u}_{1}+\mathrm{u}_{2}=$ \qquad
(A) $\left[\begin{array}{l}0 \\ 1 \\ -1\end{array}\right]$
(B) $\left[\begin{array}{l}1 \\ -1 \\ 1\end{array}\right]$
(C) $\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$
(D) $\left[\begin{array}{l}1 \\ -1 \\ 0\end{array}\right]$
23. In ABC if $\cos \mathrm{A}=\frac{\sin \mathrm{B}}{2 \sin \mathrm{C}}$, then Δ is \qquad
(A) an isosceles
(B) scalene
(C) an equilateral
(D) right angled
24. $\operatorname{In} \triangle \mathrm{ABC}, \frac{\mathrm{c}-\mathrm{b} \cos \mathrm{A}}{\mathrm{b}-\mathrm{c} \cos \mathrm{A}}=$ \qquad
(A) $-\frac{\cos \mathrm{B}}{\cos \mathrm{C}}$
(B) $\frac{\cos C}{\cos B}$
(C) $\frac{\cos \mathrm{B}}{\cos \mathrm{C}}$
(D) $-\frac{\cos C}{\cos B}$
25. $\tan \left[\tan ^{-1}\left(\frac{1}{2}\right)-\tan ^{-1}\left(\frac{1}{3}\right)\right]$ is \qquad
(A) $\frac{1}{3}$
(B) $\frac{1}{5}$
(C) $\frac{1}{7}$
(D) $\frac{1}{9}$
26. The number of integral value of m for which $x^{2}+y^{2}+(1-m) x+m y+5=0$ is the equation of a circle whose radius cannot exceed 5 , is
(A) 20
(B) 18
(C) 16
(D) 24
27. If $f(x)$ is continuous at $x=0$, where $f(x)=\frac{e^{x^{2}}-\cos x}{x^{2}}$, for $x \neq 0$, then $f(0)$ is \qquad
(A) 1
(B) $\frac{2}{3}$
(C) $\frac{3}{2}$
(D) $\frac{5}{2}$
28. If $x^{K} y^{T}=(x+y)^{K+T}$ then $\frac{d y}{d x}$ is \qquad
(A) $\frac{x}{y}$
(B) $-\frac{x}{y}$
(C) $\frac{y}{x}$
(D) $-\frac{y}{x}$
29. If $y=\sqrt{\log x+\sqrt{\log x+\sqrt{\log x+\ldots \infty}}}$ then $\frac{d y}{d x}=$ \qquad
(A) $x y$
(B) $\frac{1}{x(2 y-1)}$
(C) $-x y$
(D) $\frac{-1}{2 x y}$
30. If $\cos ^{-1}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)=a$ then $\frac{d^{2} y}{d x^{2}}$ is \qquad
(A) $\frac{x}{y}$
(B) 2 x
(C) 0
(D) 2 y
31. In a box containing 100 bulbs, 10 bulbs are defective. The probability that out of a sample of 5 bulbs, none is defective is
(A) 10^{-5}
(B) 2^{-5}
(C) $(0.9)^{5}$
(D) 0.9
32. The function $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{3}-15 \mathrm{x}^{2}-144 \mathrm{x}-7$ is decreasing for \qquad
(A) $3<x<8$
(B) $3 \leq x \leq 8$
(C) $-3<x<8$
(D) $-3 \leq x<8$
33. If displacement of particle is given by $x=160 t-16 t^{2}$, then at $t=1$ and $t=9$, velocities are \qquad
(A) equal
(B) equal and opposite
(C) zero
(D) in the ratio $2: 1$
34. If the equation $3 x^{2}+10 x y+3 y^{2}+16 y+k=0$ represents a pair of lines, then k is \qquad
(A) 16
(B) -12
(C) -16
(D) 12
35. The combined equation of the lines passing through the origin and which are at a distance of 9 units from the y-axis, is \qquad
(A) $x^{2}-81=0$
(B) $x^{2}+81=0$
(C) $\mathrm{y}^{2}-81=0$
(D) $\mathrm{y}^{2}+81=0$
36. In a certain town 30% families own a scooter and 40% on a car 50% own neither a scooter nor a car 200 families ow both a scooter and car consider the following statements in this regard
(1) 20% families own both scooter and car
(2) 35% families own either a car or a scooter
(3) 10000 families live in town

Which of the above statements are correct?
(A) 2 and 3
(B) 1, 2 and 3
(C) 1 and 2
(D) 1 and 3
37. If the slope of one of the lines given by $k x^{2}+4 x y-y^{2}=0$ exceeds the slope of the other by 8 , then value of k is \qquad
(A) 8
(B) 16
(C) 4
(D) 12
38. The volume of tetrahedron whose vertices are $\mathrm{P}(-1,2,3), \mathrm{Q}(3,-2,1), \mathrm{R}(2,1,3), \mathrm{S}(-1,2,4)$ is
\qquad
39. $\overline{\mathrm{p}}=\frac{\overline{\mathrm{b}} \times \overline{\mathrm{c}}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}, \overline{\mathrm{q}}=\frac{\overline{\mathrm{c}} \times \overline{\mathrm{a}}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}, \overline{\mathrm{r}}=\frac{\overline{\mathrm{a}} \times \overline{\mathrm{b}}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}$, $\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}$ are non-coplanar vectors then $[\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}] \cdot[\overline{\mathrm{p}}+\overline{\mathrm{q}}+\overline{\mathrm{r}}]$ is
(A) 0
(B) 2
(C) 3
(D) -1
40. Let the vectors $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ represents adjacent sides AB and BC respectively of regular hexagon ABCDEF . Then the vector representing side CD is \qquad
(A) $\bar{b}-\bar{a}$
(B) $\bar{b}+\bar{a}$
(C) $\bar{a}-\bar{b}$
(D) $2 \bar{a}+\bar{b}$
41. If $f(x)=\sin ^{2} x+\sin ^{2}\left(x+\frac{x}{3}\right)+\left(\cos x \cos \left(x+\frac{\pi}{3}\right)\right)$ and $g\left(\frac{5}{4}\right)=1$ then $\operatorname{gof}(x)=\ldots$.
(A) 1
(B) 2
(C) -2
(D) -1
42. The line joining the points $(-2,1,-8)$ and (a, b, c) is parallel to the line whose direction ratio are 6,2 , 3 then \qquad
(A) $\mathrm{a}=0, \mathrm{~b}=5, \mathrm{c}=5$
(B) $a=4, b=3, c=-5$
(C) $a=3, b=5, c=11$
(D) $a=1, b=2, c=-6$
43. If a straight line in space is equally inclined to the co-ordinate axis, then the cosine of its angle of inclination to any one of the axes is \qquad
(A) $\frac{1}{2}$
(B) $\frac{1}{3}$
(C) $\frac{1}{\sqrt{2}}$
(D) $\frac{1}{\sqrt{3}}$
44. The shortest distance between the lines $\overrightarrow{\mathrm{r}}=(4 \mathrm{i}-\mathrm{j})+\lambda(\mathrm{i}+2 \mathrm{j}-3 \mathrm{k})$ and $\vec{r}=(i-j+2 k)+\lambda(i+4 j-5 k)$, is \qquad
(A) $\frac{2}{\sqrt{3}}$
(B) $\frac{\sqrt{3}}{2}$
(C) $\frac{1}{2 \sqrt{3}}$
(D) $\frac{1}{\sqrt{3}}$
45. If the points $(5,5, \lambda),(-1,3,2)$ and $(-4,2,-2)$ are collinear then $\lambda=$ \qquad
(A) -6
(B) 5
(C) 6
(D) 10
46. If θ is acute angle between the line $\frac{x+1}{1}=\frac{y-1}{2}=\frac{z-2}{2}$ and the plane $2 x-y+\sqrt{\lambda} z+4=0$ such that $\theta=\cos ^{-1}\left(\frac{\sqrt{8}}{3}\right)$ then $\lambda=$ \qquad
(A) $\frac{-4}{3}$
(B) $\frac{3}{4}$
(C) $\frac{-3}{5}$
(D) $\frac{5}{3}$
47. If the plane meets the co-ordinates axes at $\mathrm{A}, \mathrm{B}, \mathrm{C}$ such that the centroid of triangle ABC is $\left(\frac{1}{3}, \frac{2}{3}, \frac{4}{3}\right)$ then equation of plane is \qquad
(A) $x+2 y+4 z=4$
(B) $4 x+2 y+z=4$
(C) $x+y+z=4$
(D) $x+2 y+3 z=8$
48. The distance between the planes $2 x-y+2 z+3=0$ and $4 x-2 y+4 z+5=0$ is \qquad
(A) $\frac{2}{3}$
(B) $\frac{1}{3}$
(C) $\frac{1}{5}$
(D) $\frac{1}{6}$
49. The feasible region is represented by \qquad (
(A) $2 \mathrm{x}+5 \mathrm{y} \geq 80, \mathrm{x}+\mathrm{y} \leq 20, \mathrm{x} \geq 0, \mathrm{y} \geq 0$
(B) $2 \mathrm{x}+5 \mathrm{y} \leq 80, \mathrm{x}+\mathrm{y} \geq 20, \mathrm{x} \geq 0, \mathrm{y} \geq 0$
(C) $2 x+5 y \leq 80, x+y \leq 20, x \geq 0, y \geq 0$
(D) $2 x+5 y \geq 80, x+y \geq 20, x \geq 0, y \geq 0$
50. If A is the set of even natural numbers less then 8 and b is the set of prime numbers less than 7 , then the number of relations from A to B is
(A) 2^{9}
(B) 9^{2}
(C) 3^{2}
(D) $2^{9}-1$

