

	GuruAanklan	Foundation / MHT-CET /	Examination / Set-A / Mathe	ematics / QP		
11.	If for the triangle perimeter is 37 cms and length of sides are in G.P. also the length of the smallest side					
	is 9 cms, then length of	f remaining two sides are	and			
	(A) 12, 16	(B) 14, 14	(C) 10, 18	(D) 15, 13		
12.	The bacteria culture grows at a rate proportional to its size. After 2 hours there are 600 bacteria and					
	after 8 nours the count (A) 102	(\mathbf{P}) 120	$\begin{array}{c} \text{population is} \\ (C) 124 \end{array}$	(D) 142		
13	(A) 102 (B) 120 (C) 124 (D) 142 A random variable X has the following probability distribution					
15.	X = x -2 -1 0 1 2 3					
	P[X = x] 0 1 k	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	then the expected value is					
	(A) 0.6	(B) 0.5	(C) 0.7	(D) 0.8		
14.	The probability distribution of X, the number of defects per 10 meter of a fabric as					
	$X = x \qquad 0 \qquad 1$	2 3 4				
	P[X = x] 0.45 0.35 0.15 0.03 0.02 then variance (x) is					
	(A) 0.5326	(B) 0.82	(C) 1.54	(D) 0.8676		
15.	If X has binomial distribution with mean 'np' and variance 'npq' then $\frac{P[X=k]}{P[X=k-1]}$ is					
	(A) $\frac{n-k}{k-1} \cdot \frac{p}{q}$	(B) $\frac{n-k+1}{k} \cdot \frac{p}{q}$	(C) $\frac{n+1}{k} \cdot \frac{p}{q}$	(D) $\frac{n-1}{k+1} \cdot \frac{p}{q}$		
16.	A common tangent to $9x^2 - 16y^2 = 144$ and $x^2 + y^2 = 9$ is					
	(A) $y = 3\sqrt{\frac{2}{7}}x + \frac{15}{\sqrt{7}}$	(B) $y = 2\sqrt{\frac{3}{7}}x + 15\sqrt{7}$	(C) $y = \frac{3}{\sqrt{7}}x + \frac{15}{\sqrt{7}}$	(D) $y = 2\sqrt{\frac{3}{7}}x + 15\sqrt{7}$		
17.	The contrapositive of the statement pattern $(p \lor q) \rightarrow r$ is					
	(A) $\mathbf{r} \rightarrow (\mathbf{p} \lor \mathbf{q})$	(B) ~ $r \rightarrow (p \lor q)$	$(C) \sim r \rightarrow (\sim p \land \sim q)$	(D) $p \rightarrow (q \lor r)$		
18.	The disjunction $pv \sim q$ is false only when					
	(A) both p and q are fa	lse	(B) p is true and q is false			
	(C) p is false and q is t	rue	(D) both p and q are true	(D) both p and q are true		
19.	The simple logical expression of $(\sim p \land q) \lor (\sim p \land \sim q) \lor (p \land \sim q)$ is					
	$(\mathbf{A}) \sim \mathbf{p} \lor \mathbf{q}$	(B) ~ $p \lor ~ q$	(C) $p \lor \sim q$	(D) $p \land \sim q$		
20.	If a nilpotent matrix of order 2 then $A(1+A)^n$ is equal to					
	(A) A	(B) 0	(C) A^2	(D) A^{-1}		
21.	If the line $x - 1 = 0$ is the directrix of the parabola $y^2 - kx + 8 = 0$ then one of the value of k is					
	(A) 4	(B) $\frac{1}{8}$	(C) $\frac{1}{4}$	(D) 8		
Guru Aanklan 3 Website : www.guruaanklan.com						

GuruAanklan Foundation / MHT-CET / Examination / Set-A / Mathematics / QF

	GuruAanki	an Foundation / MHT-C	CET / Examination / Set-A / I	Nathematics / QP		
30.	If $\cos^{-1}\left(\frac{x^2 - y^2}{x^2 + y^2}\right) = a$ then $\frac{d^2y}{dx^2}$ is					
	(A) $\frac{x}{y}$	(B) 2x	(C) 0	(D) 2y		
31.	In a box containing 100 bulbs, 10 bulbs are defective. The probability that out of a sample none is defective is					
	(A) 10^{-5}	(B) 2 ⁻⁵	(C) $(0.9)^5$	(D) 0.9		
32.	The function $f(x) = 2x^3 - 15x^2 - 144x - 7$ is decreasing for					
	(A) $3 < x < 8$	(B) $3 \le x \le 8$	(C) -3 < x < 8	(D) $-3 \le x < 8$		
33.	If displacement of pa	article is given by $x = 1$	$60t - 16t^2$, then at t = 1 and	d t = 9, velocities are		
	(A) equal	(B) equal and opp	posite (C) zero	(D) in the ratio $2:1$		
34.	If the equation $3x^2$ -	$+10xy+3y^2+16y+k =$	= 0 represents a pair of line	es, then k is		
	(A) 16	(B) –12	(C) –16	(D) 12		
35.	The combined equation of the lines passing through the origin and which are at a distance of 9 us from the y-axis, is					
	(A) $x^2 - 81 = 0$	(B) $x^2 + 81 = 0$	(C) $y^2 - 81 = 0$	(D) $y^2 + 81 = 0$		
36.	In a certain town 30% families own a scooter and 40% on a car 50% own neither a scooter nor a car 200 families ow both a scooter and car consider the following statements in this regard (1) 20% families own both scooter and car (2) 35% families own either a car or a scooter (3) 10000 families live in town Which of the above statements are correct?					
	(A) 2 and 3	(B) 1, 2 and 5				
37.	If the slope of one o value of k is	f the lines given by kx _	$x^2 + 4xy - y^2 = 0$ exceeds t	he slope of the other by 8, then		
	(A) 8	(B) 16	(C) 4	(D) 12		
38.	The volume of tetra	hedron whose vertices	are P (-1, 2, 3), Q (3, -2,	, 1), R (2, 1, 3), S (-1, 2, 4) is		
39.	$\overline{p} = \frac{\overline{b} \times \overline{c}}{\left[\overline{a} \ \overline{b} \ \overline{c}\right]}, \overline{q} = \frac{\overline{c} \times \overline{a}}{\left[\overline{a} \ \overline{b} \ \overline{c}\right]}, \overline{r} = \frac{\overline{a} \times \overline{b}}{\left[\overline{a} \ \overline{b} \ \overline{c}\right]}, \overline{a} \ \overline{b} \ \overline{c} \text{ are non-coplanar vectors then } \left[\overline{a} + \overline{b} + \overline{c}\right] \cdot \left[\overline{p} + \overline{q} + \overline{a}\right]$					
	is	(\mathbf{P}) 2	(C) 2	(D) 1		
40		$(\mathbf{D}) \mathbf{Z}$		$(U)^{-1}$		
40.	Then the vector representing side CD is					
	(A) $\overline{b} - \overline{a}$	(B) $\overline{b} + \overline{a}$	(C) $\overline{a} - \overline{b}$	(D) $2\overline{a} + \overline{b}$		
	Guru Aan	klan	5 Web	osite : www.guruaanklan.com		

