GuruAanklan / HSC Examination Set - A / Mathematics / QP

GuruAanklan

Grand Test

HSC EXAMINATION SET - A MATHEMATICS

M.Marks: 80

Duration: 3 Hrs

Notes : (i) All questions are compulsory.

- (ii) Figures to the right indicate full marks.
- (iii) Solution of LPP should be written on graph paper only.
- (iv) Answers to both the sections should be written in the same answer book.
- (v) Answer to every new question must be written on a new page.

SECTION - I

Q.1 (A) Select and write the correct answer from the given alternative in each of the following	. (6)[12]
(i) If p, q, r are the statements with truth values T,F,T respectively. Then the truth value of $(p \lor q) \rightarrow (q \lor r)$ is	(2)
a) T b) F c) T or F d) T and F	
(ii) Find the value of 'k' if the following equation represents a pair of lines $3x^2 + 10xy + 3y^2 + 16y + k = 0$	(2)
(a) 12 b) -12 c) 21 d) -21	
(iii) Find the principal solution of the equation $\tan x = \sqrt{3}$	(2)
a) $\frac{f}{4}, \frac{3f}{4}$ b) $\frac{f}{3}, \frac{4f}{3}$ c) $\frac{f}{4}, \frac{5f}{4}$ d) $\frac{f}{2}, \frac{3f}{3}$	
(B) Attempt any THREE of the following :	(6)
(i) Find the distance between the parallel planes $r(2i-3j+6k) = 5$ and $r(6i-9j+18k) + 20 = 0$.	(2)
(ii) The angle between the lines represented by $4x^2 + 5xy + y^2 = 0$	(2)
(iii) Write the negation of $r \rightarrow (\sim p \land q)$	(2)
(iv) The position vectors of the points A and B are $2i - j + 5k$ and $-3i + 2j$ respectively. Find the vector of the point which divides the line segment AB in the ratio 1 : 4 internally	e position (2)
(v) The Cartesian equation of a line is $\frac{x+5}{3} = \frac{y+4}{5} = \frac{z+5}{6}$. Write its vector form.	(2)
$3 \qquad 5 \qquad 6$	(2)
GuruAanklan (1) Website : www.guruaanklan	.com

Q. 2 (A) Attempt any TWO of the following :	(6)[14]	
(i) Solve the given equations by the method of inversion : $2x + 3y = -5$, $3x + y = 3$.	(3)	
(ii) Show that the lines and $x + y = 10$ contain the sides of an equilateral triangle.	(3)	
(iii) If the lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$ and $\frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1}$ intersect, then find the value of 'k'.	(3)	
(B) Attempt any TWO of the following :	(8)	
(i) Determine whether the following statement pattern is a tautology or a contradiction or a contingency :		
$[(p \lor \sim q) \lor (\sim p \land q)] \land r$	(4)	
(ii) In ABC, if $\cos A = \sin B - \cos C$ then show that it is a right angled triangle.	(4)	
(iii) If $\left[\overline{u}\right] = 3$ and vector \overline{u} is equally inclined to the unit vectors $\overline{i}, \overline{j}$ and \overline{k} , find \overline{u} .	(4)	
Q. 3 (A) Attempt any TWO of the following :	(6) [14]	
(i) The cost of 4 dozen pencils, 3 dozen pens and 2 dozen erasers is Rs.60. The cost of 2 dozen penc pens and 6 dozen erasers is Rs 90 whereas the cost of 6 dozen pencils,2 dozen pens and 3 dozen eras Find the cost of each item per dozen .		
(ii) Express $-\overline{i} - 3\overline{j} + 4\overline{k}$ as the linear combination of the vectors $2\overline{i} + \overline{j} - 4\overline{k}$, $2\overline{i} - \overline{j} + 3\overline{k}$ & $3\overline{i} + \overline{j}$	$\overline{k} - 2\overline{k}$ (3)	
(iii) Prove that $(\overline{a} + 2\overline{b} - \overline{c}) \cdot [(\overline{a} - \overline{b}) \times (\overline{a} - \overline{b} - \overline{c})] = 3[\overline{a} \overline{b} \overline{c}]$	(3)	
(B) Attempt any TWO of the following :	(8)	
(i) Maximize $Z = 10 x + 25y$ subject to 0 x 3, 0 y 3, $x + y$ 5. Find the maximum value of z.	(4)	
(ii) Show that the line of intersection of the planes \overline{r} . $(\overline{i}+3\overline{j}-2\overline{k})=0$ and \overline{r} . $(2\overline{i}+4\overline{j}-3\overline{k})=0$ is equally inclined to \overline{i} & \overline{j} . Also find the angle with which it makes with k .	(4)	
(iii) Show that $\frac{9f}{8} - \frac{9}{4}\sin^{-1}\left(\frac{1}{3}\right) = \frac{9}{4}\sin^{-1}\left(\frac{2\sqrt{2}}{3}\right)$	(4)	

GuruAanklan

Website : www.guruaanklan.com

(2)

SECTION – II Q. 4 (A) Select and write the correct answer from the given alternatives in each of the following . (6)[12] (i) If E (X) = 5 var (X) = 2.5 and X ~ B(n, p), then find 'n'. (2)b) 15 a) 5 c)10 d)20 (ii) Find 'k' if the function $f(x) = k \cdot x^2 \cdot (1-x), 0 < x < 1$ is p.d.f. of r.v. X. (2)=0. otherwise a) 12 b) 21 c) 15 d) 2 (iii) $y = ae^x + be^{-3x}$ is a solution of (2)a) $\frac{d^2 y}{dx^2} + y = 0$ b) $\frac{d^2 y}{dx^2} + xy \frac{dy}{dx} + y = 0$ c) $\frac{d^2 y}{dx^2} + 2\frac{dy}{dx} - 3y = 0$ d) $\frac{d^2 y}{dx^2} + x\frac{dy}{dx} + y = 0$ (B) Attempt any THREE of the following : (6) (i) Examine the continuity of the following functions : $f(x) = \frac{3^x + 3^{-x} - 2}{x^2}, \text{ for } x \neq 0$ $=(\log 3)^2$, for $x \neq 0$, at x = 0(2)If $u = e^{\log \cos 4x}$ & $v = e^{\log \sin 4x}$ show that $\frac{du}{dv} = \frac{-u}{v}$ (ii) (2)Solve the differential equation $1 + \frac{dy}{dx} = \cos ec(x + y)$, (iii) (2)(iv) If $y = \cot^{-1}\left(\frac{1-3x^2}{3x-x^3}\right)$ then find $\frac{dy}{dx}$. (2)(v) Evaluate : $\int_{3}^{3} \frac{\sqrt[3]{x+5}}{\sqrt[3]{x+5} + \sqrt[3]{9-x}} dx$ (2)Q. 5.(A) Attempt any TWO of the following : (6) [14] (i) Evaluate : $\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log |x + x^2 + a^2| + c$ (3)(ii) Evaluate $\int x^5 \sqrt{a^3 + x^3} dx$ (3)GuruAanklan 3 Website : www.guruaanklan.com

(iii) If mean of a binomial distribution is 3 and variance is $\frac{3}{2}$, find the probability of at least 4 successes. (3)

(B) Attempt any TWO of the following :

(i) If f (x) is continuous on (0, 8), where

$$f(x) = x^{2} + ax + 6$$
, for $0 \le x < 2$
 $= 3x + 2$, for $2 \le x < 4$
 $= 2ax + 5b$, for $4 < x \le 8$.. Find a and b
(4)

(ii) Solve,
$$\frac{dy}{dx} + 2y \tan x = \sin x$$
, given that $y = 0$, When $x = \frac{f}{3}$, (4)

(iii) Determine the maximum & minimum value of
$$f(x) = x^2 + \frac{16}{x^2}$$
 (4)

Q. 6 (A) Attempt any TWO of the following :

(i) Evaluate :
$$\int \frac{2x^3 + 3x^2 - 3}{2x^2 - x - 1} dx =$$
 (3)

(ii) Evaluate:
$$\int_{0}^{f_{4}} \frac{dx}{3\cos 2x + 5} dx$$
 (3)

(iii) Evaluate:
$$\int_{\frac{f}{2}}^{f} e^{x} \left(\frac{1 - \sin x}{1 - \cos x} \right) dx$$
(3)

(B) Attempt any TWO of the following :

(i) The p.d.f of continuous random variable X is given by

$$f(x) = \frac{1}{2}, \quad 0 < x < 2$$

= 0, otherwise. Find P (X < 1.5), P (X > 1) (4)

(ii) If y is a differentiable function of u and u is differentiable function of x, then Prove that

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \quad \text{Hence, find} \frac{dy}{dx} , \text{if } y = Sin(x^2 + 5)$$
(4)

(iii) An aeroplane at an altitude of 1 km is flying horizontally at 800 km/hr, passes directly over an observer. Find the rate at which it is approaching the observer when it is 1250 meters away from him. (4)

GuruAanklan

(8)

(8) [14]

(8)