

Instruction :

Solve all questions. Draw diagrams whenever necessary
Diagram is essential for writing the proof
Do not change the order of the questions
Marks of constructions should be distinct
Q. 1 Solve any four questions.
(1) In the following figure, parallelogram ABCD is a trapezium. side $\mathrm{AB}\|\operatorname{seg} \mathrm{PQ}\|$ side DC and $\mathrm{AP}=15, \mathrm{PD}=$ $12, \mathrm{QC}=14$ then find BQ .

(2) Draw a circle of radius 3.5 cm . Take any point K on it. Draw a tangent to the circle at K without using centre of the circle.
(3) From the figure given whether the triangles are similar or not. Give reason.

(4) Draw an angle of 110° and bisect it.
(5) In the following figure $\mathrm{RP}: \mathrm{PK}=3: 2$, then find the value of $\mathrm{A}(\Delta T R P): \mathrm{A}(\Delta T R K)$

Q. 2 Solve any three sub-questions.
(1) Find the perimeter of an isosceles right triangle with each of its congruent sides is 7 cms .
(2) Construct the circumcircle of $\triangle \mathrm{KLM}$ in which $\mathrm{LM}=7 \mathrm{cms}, \angle \mathrm{K}=60^{\circ}, \angle \mathrm{M}=55^{\circ}$
(3) D is a point on side BC of $\triangle \mathrm{ABC}$ such that $\angle \mathrm{ADC}=\angle \mathrm{BAC}$

Show that $\mathrm{AC}^{2}=\mathrm{BC} \times \mathrm{DC}$
(4) Sides of a triangle are 9, 40 and 41. Determine whether the triangle is a right angled triangle or not.
Q. 3 Solve any two sub-questions.
(1) In the following figure, Ray PT is the bisector of $\angle \mathrm{QPR}$. Find the value of ' x ' and the perimeter of $\triangle P Q R$.

(2) Draw a tangent to the circle from the point L with radius 2.8 cms . Point ' L ' is at a distance 5 cms from the centre ' M '.
(3) In $\triangle \mathrm{XYZ}, \angle \mathrm{Y}=90^{\circ}, \angle \mathrm{Z}=\mathrm{a}^{\circ}$ and $\angle \mathrm{X}=(\mathrm{a}+30)^{\circ}$. If $\mathrm{XZ}=24$, find XY and YZ .

Q. 4 Solve any one sub-questions.
(1) $\triangle \mathrm{RHP} \sim \triangle \mathrm{NED}$. In $\triangle \mathrm{NED}, \mathrm{NE}=7 \mathrm{cms}, \angle \mathrm{D}=30^{\circ}, \angle \mathrm{N}=20^{\circ}$ and $\frac{\mathrm{HP}}{\mathrm{ED}}=\frac{4}{5}$, Construct $\triangle \mathrm{RHP}$ and \triangle NED.
(2) ABC is a triangle where $\angle \mathrm{C}=90^{\circ}$. Let $\mathrm{BC}=\mathrm{a}, \mathrm{CA}=\mathrm{b}, \mathrm{AB}=\mathrm{c}$ and ' p ' be the length of the perpendicular from C on $A B$. Prove that (i) $\mathrm{cp}=\mathrm{ab}$ (ii) $\frac{1}{\mathrm{p}^{2}}=\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}$.

